

https://eventos.utfpr.edu.br//sicite/sicite2017/index

Correlação entre métodos de extração de proteína em genótipos de Trigo

RESUMO

Josiane Conte josiane_conte@hotmail.com Universidade Tecnológica Federal do Paraná, Pato Branco, Paraná, Brasil

Giovani Benin benin@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Pato Branco, Paraná, Brasil

Alana Madureira

alanna_madureira@hotmail.com Universidade Tecnológica Federal do Paraná, Pato Branco, Paraná, Brasil O objetivo do trabalho foi avaliar o perfil proteico de genótipos de trigo desenvolvidos pelo programa de melhoramento genético da UTFPR campus Pato Branco e correlacionar métodos de extração de proteína com métodos convencionais de qualidade industrial de trigo. As sementes foram obtidas de 20 genótipos, sendo 17 linhagens desenvolvidas pelo programa de melhoramento genético de trigo da UTFPR e 3 cultivares utilizadas como testemunha. Realizou-se análises de Bradford, cor, alveografia, farinografia e sedimentação em SDS. Após a obtenção dos dados foi realizado análise de variância (ANOVA) e verificando significância dos tratamentos realizou-se teste de agrupamento de médias Scott-Knott a 5% de probabilidade de erro e posteriormente análise de correlação de Pearson entre métodos de extração de proteína. Conforme os dados obtidos da Força de Glúten pode-se agrupar 11 linhagens da classe melhorador (UTFT 12184, UTFT 12503, UTFT 12521, UTFT 12613, UTFT 12622, UTFT 12787, UTFT 12947, UTFT 121002, UTFT 121096, UTFT 121006 e UTFT 121122), 4 da classe tipo pão (UTFT 12171, UTFT 12183, UTFT 12733 e UTFT12764) e 2 para biscoitos (UTFT 12711 e UTFT 12716). A relação P/L correlacionou positivamente com P (tenacidade) e negativamente com L (extensibilidade da massa). O W (força de glúten), se correlacionou positivamente com P/L e estabilidade. Os genótipos desenvolvidos pelo programa de melhoramento genético de trigo da UTFPR se enquadram nos padrões de qualidade industrial.

PALAVRAS-CHAVE: Triticum aestivum. Qualidade industrial. Farinha.

INTRODUÇÃO

O trigo (*Triticum aestivum* L.) é um dos cereais mais importantes na dieta humana em todo o mundo, sendo componente de inúmeros produtos na indústria alimentícia. A produção brasileira situasse na faixa de 5,5 milhões de toneladas, quantidade insuficiente para atender a demanda interna que é de aproximadamente 12 milhões de toneladas (CONAB, 2016).

Um dos principais entraves para a comercialização do trigo no Brasil é atingir a qualidade mínima necessária. A instrução normativa nº 38 de 30 de novembro de 2010 (BRASIL, 2010) aumentou a exigência quanto a qualidade de panificação, e os parâmetros de qualidade passaram a ter uma maior importância para comercialização.

Vários métodos têm sido propostos para avaliação da qualidade industrial em trigo. As análises convencionais de qualidade são a alveografia e farinografia. A alveografia mede a força e o trabalho mecânico que a massa possui para se expandir, fornecendo os parâmetros de força de glúten, tenacidade e extensibilidade. Já a farinografia, avalia a qualidade de mistura e absorção de água pela massa, fornecendo o parâmetro de estabilidade (SEAD, UFRGS,2014).

O teste de sedimentação em SDS (dodecil sulfato de sódio) é considerado uma medida indireta de qualidade de panificação, sendo sua classificação baseada no volume de material sedimentado (mL), composto pelas proteínas insolúveis formadoras de glúten (MITTELMANN et al., 2000).

O método Bradford14, baseia-se na interação do corante G-250 com proteínas que contenham aminoácidos de cadeias laterais básicas. Apesar de ser um método rápido, apresenta algumas desvantagens, tais como variação da absortividade específica para diferentes proteínas, falta de linearidade na lei de Lambert-Beer, e resultados não confiáveis para as amostras que possuem proteínas de baixo peso molecular (BITTENCOURT et al., 2012).

Assim, o objetivo do presente trabalho foi estudar o perfil proteíco de genótipos de trigo desenvolvidos pelo programa de melhoramento genético da UTFPR campus Pato Branco, e avaliar a associação de métodos indiretos de extração de proteína com métodos convencionais de qualidade industrial de trigo.

Foram utilizadas três cultivares comerciais como testemunhas (TBIO Mestre, TBIO Iguaçu e TBIO Tibagi) e 18 linhagens (12171, 12183, 12184, 12503, 12521, 12613, 12622, 12711, 12716, 12733, 12764, 12787, 12947, 121002, 121096, 121006 e 121122) do programa de melhoramento genético de trigo da Universidade Tecnológica Federal do Paraná (UTFPR), Campus Pato Branco-PR, que foram conduzidas em ensaio de Valor de Cultivo e Uso (VCU).

O ensaio de Valor de Cultivo e Uso (VCU) foi conduzido na área experimental da UTFPR, Campus Pato Branco-PR, localizada a 26°11'S e 52°40'W, e com altitude próxima a 700 metros. O delineamento experimental utilizado foi o de blocos casualizados, com três repetições. As unidades experimentais foram constituídas de seis linhas com 5 metros de comprimento, com espaçamento entre linhas de 20 cm, resultando em área total de 6m². A adubação de base foi realizada de acordo com a análise de solo, e os tratos culturais de acordo com as recomendações técnicas para a cultura do trigo (RCBPTT, 2014). Após a colheita, as linhagens foram armazenadas em câmara fria por três meses, até a realização das análises.

Para a realização do teste de Sedimentação em SDS e Bradford, as sementes foram moídas com moinho da marca IKA A11 BS32 e posteriormente

Página 8

peneiradas com peneira de 250 μm. As análises convencionais de qualidade, alveografia e farinografia, foram realizadas em laboratório terceirizado.

O teste de sedimentação em SDS foi realizado de acordo com a metodologia descrita por Peña et al. (1990), o qual utiliza os seguintes reagentes:

Reagente 1 - Solução de azul de bromofenol: 10 mg/L de água destilada. Azul de bromofenol (bromophenol blue – Sigma B 0126. PM = 670,0 / Nuclear 0620).

Reagente 2 - Solução estoque de ácido lático em água (1:8, v/v): 10 mL de ácido lático 85% em 80 mL de água destilada. Ácido lático 85% p/p. Sigma L1250, pureza \approx 98%.

Reagente 3 - Dodecil sulfato de sódio (laurilsulfato): 30 g de SDS em 1L de água destilada(3%). Sodiumdodecil sulfate − Sigma L 5750, sal sódico ≈ 95%.

Reagente 4 - Solução de trabalho ácido lático-água + SDS (3%): 17 mL de reagente 2 + 480 mL de reagente 3.

Para a realização do teste, foi utilizada proveta graduada de 25 mL, onde foram adicionados 1 g de farinha de trigo integral moída e 6 mL do reagente 1, que tem como função colorir a fase líquida e facilitar a leitura do volume sedimentado. Após a adição dos reagentes, a solução foi agitada rapidamente duas vezes por 10 segundos cada, sendo a primeira agitação realizada logo após a adição do reagente 1, e a segunda agitação realizada dois minutos após a primeira agitação. Na sequência, a solução foi mantida em repouso por dois minutos e então adicionou-se 19 ml da solução de trabalho (reagente 4), agitando novamente por dois minutos. Após a agitação, as provetas foram mantidas em repouso por 14 minutos, sendo então avaliado o volume sedimentado com precisão de 0,5 mL.

BRADFORD

Para a realização deste teste, foi utilizada 1 grama de farinha, a qual foi adicionada em almofariz, e em seguida, adicionado 10 ml de tampão fosfato de potássio 0,2 M pH 7,5. Em seguida, as amostras foram maceradas até ficarem homogêneas. Posteriormente, adicionou-se 10 ml da solução em um eppendorf de 2 ml, e centrifugou-se por 15 minutos à 4°C. Transferiu-se as amostras de 25 ul de sobrenadante para um microtubo de ensaio, e adicionou-se 225 ul de água destilada e 0,5 ml de reagente diluído de Bradford. Após, foi realizado a leitura em espectrofotômetro em 595nm.

Os dados foram submetidos a análise de variância (ANOVA), e verificando significância, realizou-se o teste de agrupamento de médias Scott-Knott, a 5% de probabilidade de erro. Também foi realizada análise de correlação de Pearson entre os diferentes métodos de extração de proteína. As análises foram realizada com o uso do software Genes (CRUZ, 2013).

A análise de variância apresentou significância (p<0,01) para o efeito de genótipos, para todos os caracteres avaliados (Tabela 1).

Tabela 1 – Análise de variância dos genótipos com diferentes métodos de extração de proteína para (NQ) Número de Queda, P (Tenacidade), L (Extensibilidade), Força de Glúten (W), P/L (Relação Tenacidade/Extensibilidade), Estabilidade (EST), L (L), (A), (B), Sedimentação em Dodecil Sulfato de Sódio (SDS), Bradford (BRAD).

	F	ăo				
	Bloco	Genótipo	Resíduo	Média	CV (%)	
Carácter	GL = 1	GL = 19	GL = 19			

NQ	299,7562	1359,4457**	386,3088	278,9375	7,04
Р	1575,0250	1113,6039**	111,7618	104,975	10,07
L	1299,6	746,5315ns	431,2315	107,35	19,34
W	3276,1	12527,3421**	884,4157	342,75	8,67
P/L	0,94864	0,3006**	0,0573	1,0195	23,49
EST	6,3202	21,0648**	6,1413	10,9575	22,61
L	0,4774	2,2053ns	1,0609	51,1527	2,0136
Α	0,0032	0,0631**	0,0135	1,1655	9,98
В	0,0133	0,1610**	0,0199	5,81825	2,42
SDS	2,601	10,2523**	1,5804	20,78	6,04
BRAD	0,0000	0,0088**	0,0001	1,7422	0,80

Através da análise de agrupamento de médias de Scott-knott (Tabela 2), foi possível observar que algumas linhagens desenvolvidas pelo programa de melhoramento genético de trigo da Universidade Tecnológica Federal do Paraná- campus Pato Branco, apresentaram desempenho similar as cultivares testemunhas já lançadas no mercado, quanto aos parâmetros de qualidade industrial.

Tabela 2 – Comparação de médias dos genótipos para os métodos de extração de farinografia, alveografia, Sedimentação em SDS e Bradford.

GENÓTIPOS	NQ	Р	L	W	P/L	EST	L	А	В	SDS	BRAD
UTF 12171	255,5b	75,50d	125,50a	285,0c	0,60c	11,2a	52,82a	1.135a	5.51d	14,9c	1.6475d
UTF \1 2183	269,75b	93,00c	127,50a	291,0c	0,73c	6,80a	49,44a	1.245a	5.92d	23,2a	1.697d
UTF 3 12184	315,75a	140,00a	99,50a	481,5a	1,48b	13,75a	51.795a	1,12a	5,67d	20,95a	1.765b
UTF 12503	249,5b	114,50b	122,00a	465,5a	1,04c	18,25a	50,48a	1,25a	5,48d	21,95a	1.834a
UTF 12521	234,75b	107,00c	113,50a	369,0b	0,99c	8,55a	51.155a	1,07a	5,92c	21,05a	1.827a
UTF 12613	295,5a	98,00c	100,50a	309,5c	0,975c	11,2a	52,23a	1.085a	5.62d	22,7a	1.425d
UTF_12622	303,25a	145,00a	102,50a	464,0a	1,46b	9,95a	50.795a	1,36a	5,77d	23,05a	1.853a
UTF 12711	277,25b	74,50d	117,00a	203,0d	0,64c	6,45a	50,02a	1.385a	5.76d	18,15b	1.748b
UTF _S 12716	278,75b	72,50d	128,00a	213,0d	0,57c	6,35a	51,74a	0,97a	5,88c	19,8b	1.695d
UTFe12733	284,25b	80,50d	126,00a	270,0d	0,66c	11,2a	49.945a	1.155a	5.59c	22,25a	1.751b
UTF g 12764	253,50b	85,50d	107,00a	256,5d	0,80c	8,65a	50,26a	1,43a	5,74d	17,5b	1.774b
UTF U 12787	289,75a	98,00c	103,50a	328,0c	0,95c	14,85a	51.105a	1.185a	5,99c	19,0b	1.725b
UTF 12947	242,50b	111,00c	50,50a	351,0c	1.125c	11,15a	50,41a	1.445a	5,78d	23,75a	1.751b
UTF 121002	276,00b	101,00c	101,50a	341,0c	0,995c	12,15a	51.485a	1,17a	5,93c	19,95b	1.785b
UTF 121096	257,75b	100,50c	124,00a	346,5c	0,81c	9,0a	50.605a	1.165a	6.23b	22,75a	1.6475d
UTF 121006	301,00a	108,50c	120,00a	376,5b	0,905c	12,45a	52,13a	1,10a	5.45d	22,5a	1,740b
UTF 4 21122	270,00b	159,00a	72,50a	401,0b	2.235a	8,45a	49,99a	1.185a	5.92c	21,2a	1.742b
TBI Q lguaçu	327,50a	123,00b	109,00a	430,5a	1,16c	16,0a	52,09a	0,765a	6.55a	21,35a	1.635d
TBIO Tibagi	276,00b	95,00c	101,00a	321,0c	0,94c	13,95a	53,4a	0,82a	5.43d	18,4b	1.6495d
TBIOMestre	320,50a	117,50b	96,00a	351,5c	1,32b	8,80a	51,16	1,27a	6.17b	21,2a	1.822a
0											

е

sma letra minúscula na linha não diferem entre si, pelo teste de Scott Knott, ao nível de 5% de probabilidade.

O parâmetro número de queda variou de 234,75 a 327,5, demostrando baixa atividade enzimática da enzima alfamilase. As linhagens do programa de melhoramento genético da UTFPR possuem valores próximos e/ou superiores as cultivares testemunhas, sendo adequados com os padrões de exigência mínima da legislação do trigo (Brasil, 2010), indicando o potencial destas linhagens para lançamentos como futuras cultivares.

A força de glúten (W) determina a capacidade da farinha sofrer um tratamento mecânico ao ser misturada com a água, sendo essencial para determinação do uso final da farinha. A partir dos dados obtidos, 11 linhagens foram classificadas na classe melhorador (UTFT 12184, UTFT 12503, UTFT 12521, UTFT 12613, UTFT 12622, UTFT 12787, UTFT 12947, UTFT 121002, UTFT 121096, UTFT 121006 e UTFT 121122), quatrona classe pão (UTFT 12171, UTFT 12183, UTFT 12733 e UTFT12764) e duas são mais adequadas para a fabricação de biscoitos (UTFT 12711 e UTFT 12716).

Conforme a Tabela 3, foi observada associação positiva de elevada magnitude entre os parâmetros P e W. Quanto maior a força de glúten presente na farinha, maior a capacidade de tenacidade da massa, ou seja, maior a capacidade de absorção de água na farinha.

Tabela 3 – Correlação de Pearson entre métodos de extração de proteína em 20 genótipos de trigo.

80.1011/000 00 11.801									
	Carácter	NQ ⁽¹⁾	Р	L	W	P/L	EST.	SDS	BRAD
	NQ	-	0,4998*	-0,4089ns	0,4968*	0,4198ns	0,3204ns	0,186ns	-0.0388ns
	Р	-	-	-0,8245**	0,8774**	0,9488**	0,1696ns	0,4189ns	0,304ns
	L	-	-	-	-0,5913ns	-0,9164*	-0,1084ns	-0,2659ns	-0,2771ns
	W	-	-	-	-	0,7045**	0,4536*	0,4446*	0,199ns
	P/L	-	-	-	-	-	0,0197ns	0,3075ns	0,3005ns
	EST	-	-	-	-	-	-	0,1447ns	-0,3163ns
	SDS	-	-	-	-	-	-	-	0,1351ns
	BRAD	-	-	-	-	-	-	-	-

(1) NQ= Número de queda, P= Tenacidade, L= Extensibilidade, W=Força de glúten, P/L=Relação tenacidade/extensibilidade, EST= Estabilidade, SDS= Sedimentação em SDS, BRAD= Bradford

Farinhas que possuem alta relação P/L tem alta qualidade de mistura da massa. A relação P/L obtida pela farinografia correlacionou positivamente com P, ao contrario de L que se correlacionou negativamente. O parâmetro W se correlacionou positivamente com P/L indicando que quanto maior a presença de glúten na farinha, maior será a qualidade de mistura da massa.

O EST se correlacionou positivamente com W mostrando que quanto maior a presença de glúten na farinha, maior a capacidade de extensão da massa sem que ocorra o rompimento. W se correlacionou positivamente com SDS, mostrando que a análise de sedimentação em SDS apresenta correlação com as proteínas formadoras do glúten.

Os genótipos desenvolvidos pelo programa de melhoramento genético de trigo da UTFPR se enquadram nos padrões de qualidade industrial. A análise de sedimentação em SDS se correlaciona com as de qualidade tecnológica, podendo ser utilizada na seleção indireta de genótipos superiores.

Correlation between protein extraction methods in Wheat genotypes

ABSTRACT

The objective of this work was to evaluate the protein profile of wheat genotypes developed by the genetic improvement program of the UTFPR campus Pato Branco and to correlate methods of protein extraction with conventional methods of wheat industrial quality. Seeds were obtained from 20 genotypes, with 17 lines developed by the UTFPR wheat breeding program and 3 cultivars used as controls. Bradford, color, alveograph, farinography and sedimentation analyzes were performed on SDS. After the data collection, a variance analysis (ANOVA) was performed and the significance of the treatments was verified by Scott-Knott method clustering at 5% error probability and later Pearson correlation analysis between protein extraction methods. According to data obtained from the Gluten Force, 11 strains of the breeding class (UTFT 12184, UTFT 12503, UTFT 12621, UTFT 12613, UTFT 12622, UTFT 12787, UTFT 12947, UTFT 121002, UTFT 121096, UTFT 121006 and UTFT 121122), 4 of the bread type (UTFT 12171, UTFT 12183, UTFT 12733 and UTFT12764) and 2 for biscuits (UTFT 12711 and UTFT 12716). The P / L ratio positively correlated with P (tenacity) and negatively with L (mass extensibility). The W (gluten strength) correlated positively with P / L and stability. The genotypes developed by UTFPR's wheat genetic improvement program conform to industrial quality standards.

KEYWORDS: Triticum aestivum. Industrial quality . Flour.

REFERÊNCIAS

BRASIL. Ministerio da Agricultura, Pecuaria e Abastecimento. Instrucao Normativa n.o 38, de 30 de novembro de 2010. Regulamento tecnico do trigo. Diario Oficial [da] Republica Federativa do Brasil, Brasilia, Secao 1, n.29, p.2, 1, 2010.

CONAB, Companhia Nacional de Abastecimento. Acompanhamento da safra Brasileira de graos, fevereiro de 2016, ISSN: 2318-6852. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/16_02_04_09_05_00_boletim_graos_fevereiro_2016.pdf, acesso em 21/08/2017.

MITTELMANN, Andrea.; NETO, Jose F B.; CARVALHO, Fernando I F.; LEMOS, Maria C I.; CONCEICAO, Leo D H. Heranca de caracteres do trigo relacionados a qualidade de panificacao. **Pesq. agropec. Bras.,** v.35, n. 5, p. 975-983, Mai. 2000.

CONAB, Companhia Nacional de Abastecimento. Acompanhamento da safra Brasileira de graos, fevereiro de 2016, ISSN: 2318-6852. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/16_02_04_09_05_00_boletim_graos_fevereiro_2016.pdf, acesso em 21/08/2017.

SEAD, UFRGS, 2014. http://thor.sead.ufrgs.br/objetos/avaliacao-farinha-trigo/2c.php, acesso em 21/08/2017.

Recebido: 31 ago. 2017. Aprovado: 02 out. 2017.

Como citar:

CONTE, J. et. al. Correlação entre métodos de extração de proteína em genótipos de Trigo. In: SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA DA UTFPR, 22., 2017, Londrina. **Anais eletrônicos...** Londrina: UTFPR, 2017. Disponível em: https://eventos.utfpr.edu.br//sicite/sicite2017/index. Acesso em: XXX.

Correspondência:

Josiane Conte

Via do Conhecimento, Km 1, Pato Branco, Paraná, Brasil.

Direito autoral:

Este resumo expandido está licenciado sob os termos da Licença Creative Commons-Atribuição-Não Comercial 4.0 Internacional.

