

Propriedades térmicas do compósito intermetálico α-al15(Fe, Mn/Cr)3Si2 em matriz de alumínio obtido por solidificação controlada.

RESUMO

O presente trabalho determinou a difusividade térmica de um compósito do tipo MMC, com intermetálico α -Al15(Fe, Mn/Cr)3Si2 em matriz de alumínio. Obteve-se uma camada espessa do compósito, entre 0,5 a 0,8 mm, a partir da solidificação controlada da liga AA380.0-F (modificada). A difusividade térmica foi então determinada pela técnica fotoacústica em amostras com polimento metalográfico. Confrontou-se os resultados com a fração volumétrica da fase intermetálica do compósito.

PALAVRAS-CHAVE: Compósito Intermetálico, Liga de Alumínio, Difusividade Térmica.

Alan Douglas Hornung.

hornung@utfpr.edu.br Departamento Acadêmico de Engenharia Mecânica, Universidade Tecnológica Federal do Paraná – UTFPR / Câmpus Ponta Grossa, Paraná, Brasil

Ivanir Luiz de Oliveira.

ivanir@utfpr.edu.br Departamento Acadêmico de Engenharia Mecânica, Universidade Tecnológica Federal do Paraná – UTFPR / Câmpus Ponta Grossa, Paraná, Brasil

Daniele Toniolo Dias.

danieletdias@utfpr.edu.br Departamento Acadêmico de Engenharia Mecânica, Universidade Tecnológica Federal do Paraná – UTFPR / Câmpus Ponta Grossa, Paraná, Brasil

INTRODUÇÃO

O desenvolvimento de materiais compósitos (MMCs) é uma alternativa para ampliar as aplicações industriais das ligas metálicas leves. Diversos trabalhos têm apontado o intermetálico α -Al15(Fe, Mn/Cr)3Si2 como promissor para reforço mecânico da matriz de alumínio [1]. Esta fase é estável termicamente, possui boa molhabilidade com o alumínio solidificado, apresenta morfologia dependente das técnicas de fabricação; e pode ser gerada de forma primária ou secundária. A estrutura cristalina do intermetálico α -Al15(Fe, Mn/Cr)3Si2 dependerá do dopante adicionado; cúbica simples (CC) ou cúbica de corpo centrado (CCC) [2,3,4].

Os estudos sobre propriedades térmicas ainda são escassos na literatura para o MMCs como o intermetálico α -Al (Fe, Mn, Cr) Si. Destaque para a difusividade térmica, equação 1.

$$\propto = \frac{k}{\rho \cdot c_p} \left[\frac{m^2}{s} \right] \tag{1}$$

Onde α = Difusividade térmica do material; k = Coeficiente de condução de calor do material; C_p= Calor específico; ρ = Densidade do material [5].

Este trabalho explora a técnica fotoacústica do tipo célula aberta (OPC–Open Photoacoustic Cell). A difusividade térmica é obtida pela detecção de ondas acústicas produzidas na amostra por um feixe de luz monocromático e modulado numa faixa de frequência (ω). O calor gerado é propagado por todo o material por condução e o aquecimento na superfície oposta da amostra aquece o gás no interior de uma câmara (figura 1). Este por sua vez produz flutuações de pressão na mesma frequência ω do feixe de luz. Estas flutuações são captadas pelo microfone, amplificadas e enviadas a um computador.

Figura 1: Conjunto sensor utilizado na análise fotoacústica.

METODOLOGIA

Os experimentos foram realizados nos Laboratório de Propriedades Termo-Ópticas (LAPTO) e no Centro de Termo Transformação de Materiais (CETEM) ambos no âmbito da UTFPR/Câmpus Ponta Grossa.

Os experimentos para a difusividade térmica por fotoacústica seguiram o esquema da figura 2. Dentro da teoria padrão da espectroscopia fotoacústica foi garantido que as amostras fossem opaca e "termicamente grossas", ou seja, que o chamado comprimento de difusão térmico fosse menor que a espessura real da amostra. Nestas condições, simplificou-se as equações para o tratamento do sinal

fotoacústico. Para o modelo padrão de difusão térmica, o sinal tem comportamento $f^{-1,5}$.

Fonte: Adaptado de [6]

A equação simplificada é dada pela equação 2 [7,8], onde, S é a amplitude OPC; f é a frequência de modulação da luz incidente; A é uma constante independente das propriedades da amostra. A difusividade térmica do material (α_s) pode ser encontrada a partir da linearização da curva experimental pela obtenção do coeficiente b, dado pela equação 3, onde l é a espessura medida da amostra.

$$S = \left(\frac{A}{f}\right) \cdot exp(-b \cdot \sqrt{f}) \tag{2} \qquad b = \sqrt{\frac{\pi \cdot l^2}{\alpha \ s}} \tag{3}$$

Na preparação das amostras, um lingote com formato tubular com 400 mm de altura e 127 mm de diâmetro externo e 48mm interno foi obtido por solidificação controlada para obter uma camada interna com um compósito entre 5 a 9 mm de espessura. A liga de referência utilizada para o banho liquido foi a AA380.0-F Die com 0,7% de Mg. O compósito é mostrado na Figura 3a. O compósito foi extraído com uma cortadeira de precisão onde obteve-se amostras com espessuras de 0,85 e 0,88 mm e preparadas metalograficamente com faces paralelas.

Figura 3: Lingote e preparação das amostras. (a) Amostra obtida com o compósito escuro na região interna do tubo; (b e c) esquema de corte das amostras.

Fonte: Adaptado de [9]

RESULTADOS E DISCUSSÃO

A fração volumétrica do intermetálico no compósito foi avaliada entre 50 e 58%. A figura 5 ilustra os resultados por OPC. Os experimentos foram realizados

na frequência de modulação de 25-70 Hz e o sinal fotoacústico foi normalizado por sua função resposta (χ) [6]. A figura 5b ilustra para a amostra 1-2A o ajuste do gráfico $\ln(S/\chi)$ f versus \sqrt{f} que possibilitou encontrar a variável b como o coeficiente angular da reta. A amplitude do sinal fotoacústico teve comportamento exponencial (equação 2) na região de frequência 27-40 Hz, como previsto pelo modelo de difusão térmica para uma amostra termicamente grossa, figura 5a. Uma vez encontrado o valor do coeficiente angular b e a espessura do material definiu-se o valor da difusividade térmica para cada amostra avaliada (equação 3).

Figura 5: Ajuste linear de S/ χ em função de f em (a) e ajuste linear de S/ χ *f em função de f1/2 em (b).

Os valores obtidos para a difusividade térmica e a fração volumétrica do reforço intermetálico estão listados na tabela 1. A difusividade térmica obtida nos compósitos é próxima a 30% do valor do alumínio comercial onde há dependência da difusividade térmica com a quantidade de fase intermetálica (reforço) contida na amostra.

Tabela 1: Valores obtidos da difusividade térmica e fração volumétrica do compósito intermetálico α -Al15(Fe, Mn/Cr)3Si2 na matriz de alumínio.

Amostras	Espessura	b	Difusividade	Difusividade	Porcentagem de
	das Amostras		(α) (x10-6 m2/s)	Média (x10-6 m2/s)	fase intermetálica (α)
1 - 2 A	820	-0,2499	33,81	33,82 ±0,23	50%
1 - 2 A	820	-0,2495	33,92		
1 - 2 A	820	-0,251	33,51		
1 - 2 A	820	-0,249	34,05		
2 - 2 A	885	-0,2843	30,44	30,31 ±0,21	58%
2 - 2 A	885	-0,2858	30,11		
2 - 2 A	885	-0,2838	30,55		
2 - 2 A	885	-0,2856	30,15		
Alumínio	892	-0,1633	93,73	93,4 [ref.6]	
comercial	960	-0,1766	92,79		
	1116	-0,2043	93,74		

Fonte: Próprio autor.

CONCLUSÃO

Pode-se concluir que a difusividade térmica para o compósito estudado com 50% de intermetálico foi de 33,82m2/s enquanto para 58% deste reforço foi de 30,31m2/s. Estes valores estão entre 32 e 36% da difusividade do alumínio comercialmente puro.

Thermal properties of the α -al15 (Fe, Mn / Cr) 3Si2 intermetallic composite in an aluminum matrix obtained by controlled.

ABSTRACT

The present work determined the thermal diffusivity of a MMC type composite with intermetallic α -Al15 (Fe, Mn / Cr) 3Si2 – aluminum matrix. A thick layer of the composite, 0.5-0.8 mm, was obtained from the controlled solidification of AA380.0-F (modified) alloy. The thermal diffusivity was then determined by the photoacoustic technique in samples with metallographic polishing. The results were compared with the volumetric fraction of the intermetallic phase of the composite.

KEYWORDS: Intermetallic Composite, Aluminum Alloy, Thermal Diffusivity.

Página | 5

AGRADECIMENTOS

Agradeço ao CNPq por incentivar a pesquisa.

REFERÊNCIAS

[1] L.G. HOU, SHUAI WANG, Z.B. HE, D. ZHANG, and J.S. ZHANG. Synthesis and Characterization of In Situ Dendritic/ Particulate a-Al(Fe,TM)Si Phase Reinforced Al Matrix Composites. Metallurgical and Materials Transactions A. V. 47A, 2016.

[2] SIMENSEN, C. J. AND BJØRNEKLETT, A.; A Model for α-Al(Mn,Fe)Si Crystals. Light Metals 2017, Springer, The Minerals, Metals & Materials Society p.197.

[3] YANG, W.; JI, S.; ZHOU, X.; STONE, I.; SCAMANS, G. Heterogeneous Nucleation of a-Al Grain on Primary a-AlFeMnSi Intermetallic Investigated Using **3D SEM Ultramicrotomy and HRTEM**. Metallurgical and Materials Transactions A. V. 45 A. № 7., 2014. p. 3971 – 3980.

[4] GAO, T.; WU, Y.; LI, C; LIU, X. Morphologies and growth mechanism of α - Al(Fe,Mn)Si in Al-Si-Fe-Mn alloy. Materials Letters. 2013, p. 191-194.

INCROPERA, f. P.; DEWITT, d. P.: Fundamentos De Transferência De Calor E
 Massa. 6 ed. Rio De Janeiro, Brasil: ltc – Livros Técnicos E Científicos S.A., 2003, 698p.

 [6] PRANDEL, Luís Valério. IMPLEMENTAÇÃO DA TÉCNICA DE FOTOACÚSTICA DE CÉLULA ABERTA PARA OBTENÇÃO DA DIFUSIVIDADE TÉRMICA DE METAIS.
 2009. 72 f. Dissertação (Mestrado) - Curso de Física, Setor de Ciências Exatas e Naturais, Universidade Estadual de Ponta Grossa, Ponta Grossa, 2009.

[7] MARQUEZINI, M. V.; CELLA, N.; MANSANARES, A. M.; VARGAS, H.; MIRANDA, L. C. M. **Open photoacoustic cell spectroscopy. Measurement Science and Technology.** V.2, 1991, p.

[8] PERONDI, L. F.; MIRANDA, L. C. M. **Minimal-volume photo acoustic cell measurement of thermal diffusivity effect of the thermoelastic sample bending.** Journal of Applied Physics. Vol. 62, 1987, p. 2955–2959.

[9] FERREIRA, Tales. **DESENVOLVIMENTO DE CAMADAS RICAS NO INTERMETÁLICO** α -Alx(Fe,Mn,Cr)ySiz EM LIGAS AI-Si POR SOLIDIFICAÇÃO **CONTROLADA**. 2016. 112 f. Dissertação (Mestrado) - Curso de Engenharia Mecânica, Departamento de Mecânica, Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2016.

Recebido: 31 ago. 2017. Aprovado: 02 out. 2017. Como citar: HORNUNG, A. D. et al. Propriedades térmicas do compósito intermetálico α-al15(Fe, Mn/Cr)3Si2 em matriz de alumínio obtido por solidificação controlada. In: SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA DA UTFPR, 22., 2017, Londrina. Anais eletrônicos... Londrina: UTFPR, 2017. Disponível em: <<u>https://eventos.utfpr.edu.br//sicite/sicite/2017/index</u>>. Acesso em: XXX. Correspondência: Alan Douglas Hornung Av Monteiro Lobato, s/n - Km 04, Ponta Grossa, Paraná, Brasil. Direito autoral: Este resumo expandido está licenciado sob os termos da Licença Creative Commons-Atribuição-Não Comercial 4.0 Internacional. Imprimentational de alumentaria da licenção Creative Commons-Atribuição-Não Comercial 4.0 Internacional.