

Parâmetros ruminais de cordeiros alimentados com triguilho

Ruminal parameters of lambs fed with triguilho

RESUMO

Felipe Faustino Gonçalves felipefaustino.g@gmail.com Universidade Tecnológica Federal do Paraná Dois Vizinhos, Paraná, Brasil

Emilyn Midori Maeda

emilyn@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Vizinhos, Paraná, Brasil

Francisco Antonio Piran Filho Chicofapf@gmail.com Universidade Tecnológica

Federal do Paraná, Vizinhos, Paraná, Brasil O objetivo deste trabalho foi avaliar o efeito da inclusão de triquilho na alimentação de cordeiros sobre o consumo e os parâmetros ruminais. Foram utilizados guatro cordeiros F1 Santa Inês x Dorper com peso médio de 45 ± 9 kg. castrados e fistulados no rúmen, organizados em delineamento quadrado latino 4x4. Os animais foram alimentados ad libitum, com 10% de sobras, duas vezes ao dia. A dieta base foi composta por feno de azevém e concentrado, na proporção volumoso:concentrado de 40:60. Para o experimento foram utilizados quatro tratamentos: T-0 = tratamento controle (0% de triguilho), T-19 = tratamento com 19% de triquilho, T-38 = tratamento com 38% de triquilho e T-57 = tratamento com 57% de triquilho na dieta. A inclusão de níveis crescentes de triguilho na dieta de cordeiros diminuiu o consumo de matéria seca significativamente (q dia-1), entretanto o triquilho não promoveu alteração nos parâmetros ruminais e no balanço de nitrogênio. Portanto o triguilho se mostrou uma boa alternativa para ser usado na alimentação animal, porém sua inclusão deve ser feita com cautela, visto que pode vir a reduzir o consumo pelos

PALAVRAS-CHAVE: Desempenho animal. Alimentos alternativos. Ruminantes. Fermentação.

ABSTRACT

The objective of this work was to evaluate the effect of the inclusion of wheat in feed lambs on consumption and ruminal parameters. Four F1 Santa Inês x Dorper lambs with an average weight of 45 ± 9 kg, castrated and fistulated in the rumen, were used in a 4x4 Latin square design. The animals were fed ad libitum, with 10% of leftovers, twice a day. The base diet was composed of ryegrass hay and concentrate, in the bulky: concentrate ratio of 40:60. For the experiment, four treatments were used: T-0 = control treatment (0% of wheat), T-19 = treatment with 19% of wheat, T-38 = treatment with 38% of wheat and T-57 = treatment with 57 % of wheat in the diet. The inclusion of increasing levels of wheat in the diet of lambs decreased the intake of dry matter significantly (g day-1), however, the pomegranate did not promote alteration in the ruminal parameters and in the nitrogen balance. Therefore, the caterpillar has proved to be a good alternative to be used in animal feed, but its inclusion should be done with caution, as it may reduce animal consumption.

KEYWORDS: Animal performance. Alternative foods. Ruminants. Fermentation.

Recebido: 31 ago. 2018. Aprovado: 04 out. 2018. Direito autoral:

Este trabalho está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional.

INTRODUÇÃO

A alimentação animal é um dos aspectos mais importantes na busca de altos índices de produtividade, principalmente em sistemas intensivos de confinamento e semi-confinamento, pois nesse tipo de atividade é grande a utilização de concentrados para suprir as demandas energéticas e proteicas dos animais, fazendo com que a alimentação represente cerca de 70% dos custos de produção (BRUM, 2015). Desse modo, alimentos alternativos vêm ganhando cada vez mais espaço e importância nos sistemas de produção animal.

Alguns resíduos e subprodutos de agroindústrias mostram-se ótimas opções para serem utilizadas nas dietas, uma vez que apresentem boa qualidade nutricional, disponibilidade e preço acessível, dessa forma, ajudando a reduzir os custos de alimentação e assegurando um bom desempenho dos animais.

O triguilho em especifico é um subproduto obtido através da classificação do trigo, constituído por grãos quebrados, chochos, pequenos, sementes de outras plantas e outras impurezas que passam por peneiras de crivo oblongo de 1,75 mm x 20,00 mm e se tornam impróprios para o consumo humano (BRASIL, 2010). Quando comparado ao milho apresenta valor nutritivo semelhante, entretanto apresenta teores elevados de proteína bruta e menor teor de energia (ROSTAGNO, 2011).

Em épocas de entressafra do milho, onde na maioria das vezes há escassez de milho e/ou preços elevados, o triguilho se mostra uma ótima opção para as dietas dos animais, se utilizado em quantidades adequadas (BRUM, 1998). Entretanto, possui uma grande variação em sua composição, o que torna dificultoso o balanceamento correto das rações, desse modo, sendo necessário analises frequentes do produto (LIMA et al, 2006).

Portanto o objetivo deste trabalho foi salientar a utilização de alimentos alternativos na alimentação animal, em especifico o triguilho, e ver seus efeitos no consumo e parâmetros ruminais em crescentes níveis de inclusão.

MATERIAL E MÉTODOS

O presente trabalho foi realizado na unidade de ensino e pesquisa (UNEPE) de metabolismo animal da Universidade Tecnológica Federal do Paraná - Campus Dois Vizinhos, no período de 12/12/2016 a 01/03/2017. Foram utilizados quatro cordeiros F1 Santa Inês X Dorper com peso médio de 45 kg, todos castrados e fistulados no rúmen para posteriores coletas de liquido ruminal e dispostos por sorteio nos tratamentos.

Os animais foram distribuídos em gaiolas metabólicas individuais (0,6 m x 1,2 m), todas com cocho e bebedouro com acesso livre a água limpa e fresca, e organizados em delineamento quadrado latino 4x4. A alimentação dos animais foi fornecida duas vezes ao dia, sendo as 09h00min e as 17h00min, com uma dieta composta por feno de azevém e concentrado, na proporção volumoso:concentrado de 40:60.

Este trabalho foi aprovado pela Comissão de Ética no Uso de Animais - CEUA da Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, tanto para o processo de implantação das cânulas (protocolo no 2016-011), quanto para realização do experimento (protocolo no 2016-020).

Para o experimento foram utilizados quatro tratamentos, sendo eles: T-0 = tratamento controle (0% de triguilho), T-19 = tratamento com 19% de triguilho, T-38

= tratamento com 38% de triguilho e T-57 = tratamento com 57% de triguilho, expressos em percentagem da matéria seca (MS) (Tabela 1). O cálculo das dietas foi feito para cordeiros pesando em torno de 40 Kg, pressupondo-se um ganho médio diário de peso de 0,250 Kg, consistindo em dietas isoenergéticas e isoprotéicas. Buscou-se atingir o nível recomendado de PB e NDT na MS de 12,5% e 66%, respectivamente, considerando uma ingestão diária de 1,3 kg de MS (NRC, 2007).

Tabela 1 - Proporção de ingredientes e composição químico-bromatológica das dietas experimentais, expressa na base da matéria seca.

<u> </u>	atamento	S		
Ingredientes (% da MS)	T-0	T-19	T-38	T-57
Milho	48,38	32,86	17,34	1,83
Triguilho	0,00	19,00	38,00	57,00
Feno de azevém	40,00	40,00	40,00	40,00
Farelo de soja	10,87	7,38	3,90	0,41
Núcleo mineral	0,75	0,75	0,75	0,75
Total	100,0	100,0	100,0	100,0
Composição (% da MS)				
Matéria seca	88,65	88,44	88,55	88,52
Proteína bruta	13,69	13,65	13,35	13,03
Extrato etéreo	2,01	1,83	1,72	1,60
Fibra em detergente ácido	20,40	20,59	20,77	20,80
Fibra em detergente neutro	38,64	39,06	38,93	39,39
Lignina em detergente ácido	3,18	3,19	3,15	3,20
Nutrientes digestíveis totais	71,11	70,67	70,65	70,26

Núcleo mineral (níveis de garantia): Cálcio = 136 (g kg⁻¹); Sódio 136 (g kg⁻¹); Fósforo = 80 (g kg⁻¹); Magnésio = 10 (g kg⁻¹); Ferro = 1300 (mg kg⁻¹); Manganês = 1000 (mg kg⁻¹); Flúor = 800 (mg kg⁻¹); Potássio = 140 (mg kg⁻¹); Iodo = 100 (mg kg⁻¹); Cobalto = 85 (mg kg⁻¹); Enxofre = 12 (mg kg⁻¹) e Zinco = 2500 (ppm).

Fonte: Piran Filho (2018)

Foi coletado liquido ruminal, via fistula, no 16° dia de cada período experimental antecedendo a alimentação da manhã (0) e 2, 4, 6 e 8 horas consecutivamente.

A determinação do pH foi feita através do uso de um peagâmetro digital logo após a coleta e filtragem. Para a determinação do N-NH3, as amostras de líquido ruminal foram centrifugadas por 20 minutos a 4.000 rotações por minuto, coletando- se o sobrenadante, o qual foi acidificado com ácido sulfúrico 20%, acondicionadas em frascos de polietileno e armazenadas a temperatura de -18°C para posteriores análises. No laboratório, as amostras foram descongeladas e filtradas em papel filtro.

Foi feito diariamente o controle e registro do alimento fornecido e das sobras, sendo que foi utilizado o consumo médio durante o período de adaptação como base para o período experimental, visando aproximadamente 10% de sobras do alimento fornecido. Para cada estação experimental foram coletadas amostras de alimentos e sobras do 11° ao 15 dia, identificadas e armazenadas corretamente para posteriores análises.

Foi considerado o consumo de alimento do 11° ao 15° dia de cada período experimental, obtido pela diferença entre a quantia de alimento fornecido e a volume de sobras coletado. Para calcular o consumo de matéria seca foi levado em conta a diferença da quantidade de matéria seca ingerida pela quantidade de matéria seca das sobras, fazendo uso da seguinte formula: CMS = (MS ração x quantidade consumida) – (MS sobras x quantidade de sobras).

Os alimentos foram pesados em balança digital com precisão de uma grama, sendo feita a mistura do volumoso com o concentrado apenas no momento do fornecimento. Os animais foram pesados no 10° dia de cada período experimental para os valores de consumo serem expressados em relação ao peso vivo, desse modo o consumo foi expresso em gramas por dia (g dia-1).

As amostras das dietas foram secas em estufa de ventilação forçada a 55°C por 72 horas, moídas em moinho tipo Willey, com peneira de 1mm e posteriormente submetidos a análises químico-bromatólogica. Os teores de MS foram obtidos por secagem em estufa a 105°C durante 16 horas e cinzas ou matéria mineral (MM) por queima em mufla a 600°C durante 4 horas (AOAC, 1998). Para a determinação das concentrações de N-NH3 foi utilizado a metodologia proposta por Weatherburn (1967). As análises laboratoriais foram realizadas nos laboratórios de bromatologia e fisiologia vegetal da Universidade Tecnológica Federal do Paraná – Câmpus Dois Vizinhos.

Para as análises estatísticas dos parâmetros ruminais (pH ruminal e N-NH3) foi utilizado o comando REPEATED do PROC MIXED do programa Statistical Analysis System (SAS, 2002), próprio para medidas repetidas no tempo, para essas variáveis considerou-se o efeito fixo de tratamento, tempo e a interação entre tempo e tratamento.

RESULTADOS E DISCUSSÃO

Com a inclusão crescente de triguilho nas dietas o consumo de matéria seca teve redução linear (P<0,05) pelos animais (tabela 2).

C	om dietas contendo níve	eis crescentes de tr	iguilho.
Tabela 2 - Consi	umo médio diário de mate	éria seca para corde	eiros alimentados

Variável		Nível de triguilho (% da MS)			EPM	Va	lor p	R e g.
	0	19	38	57	•	Line ar	Quad.	_ 9.
MS (g dia ⁻¹)	1315,2 0	1265, 90	1204, 40	58,90	59,49	0,02 8	0,360	1

g dia⁻¹ = gramas por dia; EPM = erro padrão da média; Quad. = quadrática; Regres. = regressão; MS = matéria seca. Fonte: Piran Filho (2018)

O consumo de matéria seca pode ser afetado negativamente em dietas que apresentam maior degrabilidade ruminal do amido (ALLEN, 2000; ALLEN; BRADFORD; OBA, 2009; VIEIRA, 2011), como é o caso do trigo (LI et al, 2012). A maior digestão de amido no rúmen provoca alta produção de propionato (LECHARTIER; PEYRAUD, 2010; MOATE et al, 2017), o qual é capaz de afetar negativamente no consumo (ALLEN, 2000; ALLEN; BRADFORD; OBA, 2009).

Se porventura a adição de triguilho de fato promova maior produção de propionato, pode- se explicar a redução no consumo segundo a Teoria da Oxidação Hepática descrita por Allen, Bradford e Oba (2009), a qual descreve que o consumo é controlado pela sinalização do fígado para o cérebro, sendo que o propionato provavelmente seja o sinal primário de saciedade.

O potencial hidrogeniônico (pH) do líquido ruminal não evidenciou diferença significativa (P>0,05) para os tratamentos avaliados (Tabela 3), contudo, apresentou diferença para os valores de pH em relação ao tempo após a alimentação, desse modo, constatado interação significativa (P<0,05) entre horário x tratamento. Os valores similares de pH podem ser explicados em virtude da quantidade adequada fornecida de volumoso (40% da MS) para todos os tratamentos, o que pode ter levado ao tamponamento do pH ruminal. Além disso, o teor de fibra na dieta tem relação positiva com o pH, pois estimula a mastigação e a produção de saliva (NRC, 2001).

Tabela 3. Potencial hidrogeniônico do líquido ruminal em diferentes horários após a alimentação.

Tempo de c	oleta (h) N	ível de trigi	uilho (% c	EPM	Regres.	
	0	19	38	57	_	
0	7,13	7,29	7,32	7,29	0,07	7,26
2	6,66	6,57	6,47	6,55	0,07	6,56
4	6,64	6,39	6,20	6,25	0,09	6,37
6	6,79	6,75	6,42	6,32	0,09	6,57
8	6,97	6,89	6,81	6,76	0,07	6,86

EPM = erro padrão da média; Regres. = regressão Fonte: Piran Filho (2018)

As concentrações de nitrogênio amoniacal (N-NH3) no líquido ruminal não diferiram (P>0,05) com o aumento dos níveis de triguilho na dieta (Tabela 4), porém houve diferenças significativas (P<0,05) para o tempo após a alimentação, com efeito linear decrescente na concentração de N-NH3. Não foi observado interação significativa (P>0,05) entre horário x tratamento. As concentrações ruminais de N- NH3 para todos os tratamentos são tidas adequadas para a síntese de proteína microbiana (SATTER; SLYTER, 1974; SATTER; ROFFLER, 1975).

Tabela 4. Concentrações médias de nitrogênio amoniacal (N-NH3) em mg dL-1 no líquido ruminal em diferentes horários após a alimentação.

Tempo de coleta (h)	Níve	el de trigu	EPM	Regres.		
	0	19	38	57		
0	15,45	12,29	13,10	11,96	0,72	13,20
2	14,26	12,81	14,61	15,37	1,09	14,26
4	9,91	6,88	10,04	12,84	1,18	9,92
6	7,78	5,14	7,73	9,36	0,75	7,50
8	9,28	9,17	8,25	7,90	0,64	8,65

EPM = erro padrão da média; Regres. = regressão

Fonte: Piran Filho (2018)

CONCLUSÃO

O triguilho se mostrou uma boa alternativa para utilização na alimentação animal, sem efeitos negativos na fermentação ruminal até o nível de 57% de inclusão na dieta, garantindo bons resultados. Entretanto, a inclusão deve ser feita com cautela, visto que pode reduzir significativamente o consumo pelos animais.

AGRADECIMENTOS

Agradeço a Universidade Tecnológica Federal do Paraná pela oportunidade de desenvolver este projeto, e a Fundação Araucária pelo auxílio financeiro durante a realização do trabalho. Meus agradecimentos também a professora Emilyn Midori Maeda pela orientação durante o decorrer do projeto.

REFERÊNCIAS

ALLEN, M. S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. **Journal of Dairy Science**, v. 83, n. 7, p. 1598-1624, 2000.

ALLEN, M. S.; BRADFORD, B. J.; OBA, M. Board-Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. **Journal of animal science**, v. 87, n. 10, p. 3317-3334, 2009.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTIS – AOAC. Official methods of analysis. 16.ed. Gaithersburg: AOAC International, 1998.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 38, de 30 de novembro de 2010. REGULAMENTO TÉCNICO DO TRIGO. DIÁRIO OFICIAL [DA] REPÚBLICA FEDERATIVA DO BRASIL. Brasília, DF, 2010, p 1.

BRUM, A. G. **Novos insumos usados na alimentação de bovinos de corte**. TRABALHO DE CONCLUSÃO DO CURSO DE GRADAÇÃO EM ZOOTECNIA - UNIVERSIDADE FEDERAL DE MATO GROSSO, Cuiabá, 2015, p 1.

BRUM, P. A. R.; ALBINO, L. F. T.; PIENIZ, L. C. Utilização do Triguilho em rações para frangos de corte. INSTRUÇÃO TÉCNICA PARA O AVICULTOR. Concordia: EMBRAPA- CNPSA, 1998. p 2.

LECHARTIER, C.; PEYRAUD, J. L. The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage—based diets with fixed neutral detergent fiber and starch contents. **Journal of Dairy Science**, v. 93, n. 2, p. 666-681, 2010.

LI, C. et al. Ruminal and intestinal amino acid digestion of distiller's grain vary with grain source and milling process. **Animal feed science and technology**, v. 175, n. 3, p. 121-130, 2012.

LIMA, R. F. et al. Sistema laboratorial de fracionamento de carboidratos de concentrados energéticos. **ACTA SCIENTIARUM. ANIMAL SCIENCES**, v. 28, n. 2, p. 215-221, 2006.

MOATE, P. J. et al. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows. **Journal of dairy science**, v. 100, n. 9, p. 7139-7153, 2017.

NATIONAL RESEARCH COUNCIL (NRC). **Nutrient requeriments of dairy cattle**. 7 ed. Washinton: National Academy Press, 2001. 381 p.

NATIONAL RESEARCH COUNCIL (NRC). **Nutrient Requirements of Small Ruminants**: Sheep, Goats, Cervids, and New World Camelids. 1 ed. Washington: National Academy Press, 2007. 384 p.

PIRAN FILHO, F. A. Consumo, digestibilidade e parâmetros ruminais de cordeiros alimentados com dietas contendo níveis crescentes de triguilho. 2018. 63 f.

DISSERTAÇÃO (MESTRADO EM ZOOTECNIA) – PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA, UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Dois Vizinhos, 2018.

ROSTAGNO, H. S. et al. **Tabelas brasileiras para aves e suínos**: composição de alimentos e exigências nutricionais. 3. ed. Viçosa: UFV, 2011, p 252.

SATTER, L. D.; ROFFLER, R. E. Nitrogen requirement and utilization in dairy cattle.

Journal of Dairy Science, v. 58, n. 8, p. 1219-1237, 1975.

SATTER, L. D.; SLYTER, L. L. Effect of ammonia concentration on rumen microbial protein production in vitro. **British journal of nutrition**, v. 32, n. 2, p. 199-208, 1974.

STATISTICAL ANALYSES SYSTEM - SAS. SAS systems for windows: version 9.1. Cary: SAS Institute, 2002. 525 p.

VIEIRA, A. R. Consumo e digestibilidade aparente dos nutrientes de dietas contendo sorgo em grão seco ou reidratado e ensilado para novilhos Nelore confinados. 2011. 72 f. Dissertação (Mestrado em Zootecnia) - Universidade Federal de Minas Gerais, Belo Horizonte, 2011.

WEATHERBURN, M. W. Phenol-hypochlorite reaction for determination of ammonia. **Analytical chemistry**, v. 39, n. 8, p. 971-974, 1967.