

IX SEMINÁRIO DE EXTENSÃO E INOVAÇÃO XXIV SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA

11 a 13 de Novembro | Pato Branco - PR

https://eventos.utfpr.edu.br//sicite/sicite2019

Efeito do ultrassom na esterificação enzimática do amido

Effect of ultrasound on the enzymatic esterification of starch

RESUMO

Gustavo Henrique Marin dos

gustavoh-vitor@hotmail.com Universidade Tecnológica Federal do Paraná, Apucarana, Paraná, Brasil

Alessandra Machado Baron alessandrab@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Apucarana, Paraná, Brasil

Patrícia Salomão Garcia p.salomaogarcia@gmail.com Universidade Tecnológica Federal do Paraná, Apucarana, Paraná, Brasil

Welington Pintor Menotti menotti@alunos.utfpr.edu.br Universidade Técnológica Federal do Paraná, Apucarana, Paraná, Brasil

Recebido: 19 ago. 2019. Aprovado: 01 out. 2019.

Direito autoral: Este trabalho está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional.

O objetivo deste trabalho foi estudar o efeito do ultrassom na esterificação do amido com ácido oleico catalisada por lipases de Burkholderia cepacia imobilizadas em Accurel®. Para tal, a reação foi realizada por 2 h em diferentes ciclos de trabalhos (100, 80 e 60%). O amido modificado foi analisado quanto ao grau de substituição (GS), além da análise termogravimétrica (para o amido com maior GS). Os resultados mostraram que o grau de substituição (GS 0,6; 20%) foi maior para o ciclo de trabalho 100%. O amido enzimaticamente modificado apresentou menor temperatura de degradação térmica se comparado ao amido nativo. O amido enzimaticamente modificado apresentou menor temperatura de degradação térmica se comparado ao amido nativo.

PALAVRAS-CHAVE: Ultrassom. Amido. Modificação enzimática.

ABSTRACT

The objective of this work was to study the effect of ultrasound on the esterification of starch with oleic acid catalyzed by Burkholderia cepacia lipases immobilized on Accurel®. For this, the reaction was performed for 2 h in different work cycles (100, 80 and 60%). Modified starch was analyzed for degree of substitution (DS), in addition to thermogravimetric analysis (for starch with higher DS). The results showed that the degree of substitution (DS 0.6; 20%) was higher for the 100% duty cycle. Enzymatically modified starch presented lower thermal degradation temperature compared to native starch. Enzymatically modified starch presented lower thermal degradation temperature compared to native starch.

KEYWORDS: Ultrasound. Starch. Enzyme Modification.

IX SEMINÁRIO DE EXTENSÃO E INOVAÇÃO XXIV SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA 11 a 13 do Novembro I Pata Propos - PP

11 a 13 de Novembro | Pato Branco - PR

INTRODUÇÃO

O amido por ser um polímero natural de fácil obtenção, destaca-se pelo crescente interesse pelo cuidado ambiental, já que suas propriedades são capazes de substituir polímeros derivados de fontes petroquímicas. Em contrapartida, filmes produzidos apenas com amido são frágeis e quebradiços, sendo necessário a adição de plastificantes (PEÑA; BOLAÑOS, CASTILLO, 2016; FARIA, VERCELHEZE, MALI, 2012). Uma alternativa para melhorar as propriedades dos filmes é realizar a modificação do amido, sendo essas químicas, físicas, enzimáticas ou uma combinação destas (VINHAS et al., 2007; HENRIQUE, CEREDA, SAMENTO, 2008).

As reações enzimáticas assistidas por ultrassom apresentam várias vantagens em comparação com os métodos convencionais, como redução do tempo de reação, redução da quantidade de reagentes usados, maior rendimento e quimioregio e estereosseletividade de reações que normalmente não ocorreriam sob condições normais. O ultrassom contribui principalmente para alterar a temperatura e pressão do microambiente como resultado do efeito cavitacional (LERIN et al., 2014; CHIPLUNKAR et al., 2018). Entretanto, a irradiação ultrassônica produz alta temperatura local e, consequentemente, a irradiação constante pode causar desnaturação da enzima (GALGALI, et al., 2018).

Neste sentido, o objetivo deste trabalho foi estudar enzimaticamente, a esterificação do amido assistida por diferentes ciclos de trabalho no ultrassom.

METODOLOGIA

MODIFICAÇÃO ENZIMÁTICA DO AMIDO

O amido de mandioca foi inicialmente seco (105°c, 24 h) e a esterificação enzimática foi realizada segundo Xu et al. (2012) com adaptações. Em um béquer, contendo 1 g de amido de mandioca, foram adicionados 1,5 mL de água destilada e 100 μL de ácido oleico (0,3 mmol). A solução foi homogeneizada e levada ao ultrassom (Sanders Medical-Soni Clean 2PS) a 40°C por 30 minutos. Em seguida, 0,15 g de lipase de Burkholderia cepacia LTEB11 imobilizada em Accurel® foi adicionada à solução, e o sistema foi submetido ao ultrassom a 40°C por 2 h em diferentes ciclos de trabalho: 100 % (2 h de ultrassom ligados); 80 % (8 min ligados e 2 desligados, para um total de 2 h) e 60% (6 min ligados e 4 desligados, num total de 2 h). Para a extração do ácido oleico residual, adicionou-se 2 mL de hexano ao amido, que foi agitado e centrifugado. Ao término da centrifugação, o sobrenadante foi separado e repetiu-se o procedimento por mais duas vezes, utilizando duas porções de 1 mL de hexano. As porções foram unidas e uma alíquota de 100 µL foi retirada para determinar a quantidade de ácido oleico residual (LOWRY-TINSLEY, 1976) e determinação do grau de substituição (GS). A quantificação foi realizada em triplicata. O amido foi filtrado e seco em dessecador por 24 h.

DOSAGEM DA ATIVIDADE ENZIMÁTICA

A dosagem da atividade da enzima imobilizada foi realizada através da reação de hidrólise do Palmitato de p-nitrofenila (pNPP) em meio aquoso (WINKLER; STUCKMANN, 1979). O meio reacional é formado por 0,5 mL de solução A (3 mg de palmitato de p-nitrofenila mL⁻¹ de isopropanol) e 4,5 mL da

IX SEMINÁRIO DE EXTENSÃO E INOVAÇÃO XXIV SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA 11 o 12 do Novembro I Poto Propos DP

11 a 13 de Novembro | Pato Branco - PR

solução B (2 g de Triton X-100; 0,5 g de goma arábica, em 450 mL de tampão fosfato 0,05 mol L⁻¹ pH 7,0). Desta solução, foram colocados 4,5 mL da solução B e 0,5 mL da solução A. A reação foi iniciada adicionando-se 1 mg da enzima imobilizada em um erlenmeyers de 25 mL. As reações foram realizadas a pH 7,0 e na temperatura de 40 °C, em banho termostatizado, sob agitação manual. em uma cubeta. Estabilizada na temperatura a 40°C, adicionou-se 0,1 mL da solução enzimática ou de tampão (branco). A cinética das reações foi seguida em diferentes intervalos de tempo (1 a 5 min) transferindo-se alíquotas de 1 mL para uma cubeta e simultânea leitura das absorbâncias a 410 nm. As reações foram feitas em triplicata.

ANÁLISE TERMOGRAVIMÉTRICA

A análise termogravimétrica (TGA) foi realizada no equipamento da marca Shimadzu modelo TGA-50, para avaliar as propriedades térmicas e possíveis modificações no amido de mandioca. As amostras foram aquecidas de 20 a 600°C com taxa de aquecimento de 10°C min⁻¹ sob atmosfera de nitrogênio (razão de fluxo – 50 mL min⁻¹). A estabilidade térmica dos amidos foi avaliada com base nas curvas de TG, no amido nativo e no amido modificado.

RESULTADOS E DISCUSSÕES

Após secagem do amido de mandioca (umidade de 12,5 \pm 0,1%), a dosagem da atividade enzimática foi determinada (4,3 \pm 0,2 Umg $^{-1}$). A dosagem de atividade é importante, pois a eficiência catalítica de enzimas pode mudar com o tempo de armazenamento. As reações devem ser realizadas sempre com a mesma quantidade em unidades enzimáticas. Para o referido trabalho, significa que a lipase de *B. cepacia* hidrolisa 4,3 µmol de pNPP por min e por mg de enzima.

O número máximo possível para o grau de substituição é 3, pois três unidades hidroxilas estão potencialmente disponíveis no amido, e o grau de substituição (GS) obtido do amido foi de 0,6 (20%); 0,15 (5%) para ciclo de trabalho do ultrassom de 100 e 80% respectivamente. Para o ciclo de trabalho de 60%, não houve substituição (Tabela 1).

Tabela 1 – Influência do ciclo de trabalho do ultrassom na esterificação do amido com ácido oleico por lipase de *Burkholderia cepacia* imobilizada em Accuerl®.

Taxa (%) ultrassom	GS	GS (%)
60	-	-
80	0,15 ± 0,01	5
100	0,6 ± 0,047	20

Fonte: Autoria Própria (2019).

Como já comentado, a irradiação constante pode causar desnaturação da enzima e, portanto, é importante estudar a irradiação de ultrassom em modo de pulso. Entretanto, a taxa de conversão, neste trabalho foi maior quando a irradiação ocorreu em modo constante, indicando que a enzima não sofreu desnaturação na primeira utilização.

IX SEMINÁRIO DE EXTENSÃO E INOVAÇÃO XXIV SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA 11 a 12 de Novembro | Data Propos | DB

11 a 13 de Novembro | Pato Branco - PR

Os resultados podem ser considerados satisfatório, tendo em vista que muitos amidos modificados existentes no comércio apresentam grau de substituição inferior a 0,2 (RUTEMBERG; SOLAREK, 1984).

Informações sobre reações de desidratação, oxidação e degradação podem ser obtidas a partir da análise termogravimétrica (TG), caracterizada como a variação de massa da amostra (perda ou ganho) em função da temperatura ou tempo (CANEVAROLO, 2003). A curva de TG, na região de 25 à 400°C, do amido nativo e do enzimaticamente modificado (ciclo de trabalho do ultrassom de 100%) está apresentada na Figura 1.

Feriparatura (°C)

Details and the second of the second of

Figura 1 – Curva termogravimétrica (TG) do amido nativo e modificado

Fonte: Autoria própria (2018)

A modificação do amido via esterificação enzimática levou ao enxerto de grupos ésteres em substituição das hidroxilas presentes no amido nativo. A cadeia hidrocarbônica do ácido oleico pode exercer um impedimento estérico que responde pela redução das interações intermoleculares do tipo ligações de hidrogênio entre as cadeias de amido, diminuindo assim a estabilidade térmica do amido e comprovando a modificação via catálise enzimática.

CONCLUSÃO

Foi possível modificar o amido por esterificação catalisada por lipases de *B. cepacia* imobilizada em Accurel® e o ciclo de trabalho do ultrassom influenciou na taxa de conversão do amido, sendo maior para o modo constante (GS 0,6) (ultrassom ligado durante 2 h).

IX SEMINÁRIO DE EXTENSÃO E INOVAÇÃO XXIV SEMINÁRIO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA 11 a 13 de Novembro | Pato Branco - PR

REFERÊNCIAS

CHIPLUNKAR, P. P.; ZHAO X, Tomke P.D.; NORO J.; Xu B; WANG Q; Silva C.; PRATAP A. P.; CAVACO-PAULO A. Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrasonics Sonochemistry. v 40, p. 587-593, 2018.

FARIA, F. O.; VERCELHEZE, A. E. S.; MALI, S. Propriedades físicas de filmes biodegradáveis à base de amido de mandioca, álcool polivinílico e montmorilonita. Química Nova, [s.l.], v. 35, n. 3, p.487-492, 2012.

GALGALI A.; GAWAS S. D.; RATHOD V. K. Ultrasound assisted synthesis of citronellol laurate by using Novozym 435. Catalysis Today. v 309, p. 133-139, 2018.

HENRIQUE, C. M.; CEREDA, P.; PASCOLI, M.; SARMENTO, B. S. S. Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca. Ciência e Tecnologia de Alimentos, Campinas-SP, v. 28, n. 1, jan./mar., 2008.

LERIN L.A.; LOSS R.A.; REMONATTO D.; ZENEVICZ M.C.; BALEN M.; NETTO V.O.; NINOW J.L.; TRENTIN C.M.; OLIVEIRA J.V.; de OLIVEIRA D. A. Review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng. 2014.

LOWRY, R.R.; TINSLEY, J.I. Rapid calorimetric determination off free fatty acids. J. Am. Oil Chem. Society, v. 53, p. 470-472, 1976.

PEÑA, S. P. P.; BOLAÑOS, Pedro A.; CASTILLO, H. S. V. Efecto de aditivo masterbatch en película biodegradable de almidón termoplástico de yuca y ácido poliláctico. Biotecnología En El Sector Agropecuario y Agroindustrial, Popayán, v. 14, n. 1, p.110-118, jun 2016.

VINHAS, G. M. et al. Evaluation of the types of starch for preparation of LDPE/starch blends. Brazilian Archives Of Biology And Technology, [s.l.], v. 50, n. 3, p.361-370, maio 2007.

WINKLER, U.K.; STUCKMANN, M. Glycogen, Hyaluronate, and some other polysaccharides greatly enhace the formation of exolipase by Serrati marcescens. J. Bacteriol., v. 138, n. 3, pag. 663-670, 1979.

XU, J. et al. Lipase-coupling esterification of starch with octenyl succinic anhydride. Carbohydrate Polymers. [s.l], p. 2137-2144. out. 2011.