

23 a 27 de Novembro | Toledo - PR

https://eventos.utfpr.edu.br//sicite/sicite2020

Preparação de N-acilhidrazonas derivadas do timol O-alquilado visando atividade antituberculose

Preparation of N-acylhydrazones derived from O-alkylated thymol for anti-tuberculosis activity

RESUMO

Neste estudo é proposto a síntese, caracterização, análise de parâmetros ADME/T e avaliação da ação antituberculose de N-acilhidrazonas derivadas do timol. A rota sintética foi ajustada a partir da O-alquilação do timol utilizando cloroacetato de metila onde posteriormente foi submetido a substituição nucleofílica com hidrazina. O produto denominado N-acilhidrazida foi condensado com compostos carbonílicos (cetonas ou aldeídos) sob catalise ácida gerando as N-acilhidrazonas. As moléculas foram caracterizadas utilizando espectroscopia de infravermelho e RMN de ¹H e ¹³C e a pureza foi verificada através do intervalo de fusão. Os parâmetros físico-químicos foram avaliados com base na regra de Lipinski gerando resultados promissores em termos de ADME/T para a maiorias das moléculas alvo. Foram obtidas 2 de 11 moléculas alvo previstas. Com relação ao ensaio antituberculose, o timol, isoladamente, apresentou significativa atividade frente a *M.tuberculosis* com MIC de 7,8 µg.mL⁻¹.

PALAVRAS-CHAVE: Síntese orgânica. Acilhidrazona. Mycobacterium tuberculosis. Biomoléculas.

ABSTRACT

This study proposes the synthesis, characterization, analysis of ADME/T parameters, and evaluation of the antituberculosis action of N-acylhydrazones derived from thymol. The synthetic route was adjusted from the O-alkylation of thymol using methyl chloroacetate where it was subsequently subjected to nucleophilic substitution with hydrazine. The product called N-acylhydrazide was condensed with carbonyl compounds being ketones or aldehydes under acid catalysis generating N-acylhydrazones. The molecules were characterized using infrared spectroscopy and ^1H and ^{13}C NMR, their purity was evaluated through the melting point. The physical-chemical parameters were evaluated based on the Lipinski rule, generating promising results in terms of ADME/T for most of the target molecules. 2 out of 11 predicted target molecules were obtained. Regarding the antituberculosis assay, thymol, alone, showed significant activity against M.tuberculosis with a MIC of 7.8 $\mu\text{g}.\text{mL}^{-1}.$

KEYWORDS: Organic synthesis. Acylhydrazone. Mycobacterium tuberculosis. Biomolecules.

Lincoln Herholz Ferraretto lincolnferraretto@hotmail.com Universidade Tecnológica Federal do Paraná. Londrina. Paraná. Brasil

Fábio Vandresen fabiovandresen@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Londrina, Paraná, Brasil

Recebido: 19 ago. 2020. **Aprovado:** 01 out. 2020.

Direito autoral: Este trabalho está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional.

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

INTRODUÇÃO

A tuberculose é uma doença causada pela *Mycobacterium tuberculosis*, é amplamente conhecida pelo sintoma de tosse com sangue, uma vez que o pulmão é o órgão mais atingido pela micobactéria. É estimado que um terço da população mundial tenha o bacilo em sua forma latente e os casos em sua grande maioria se concentram em 22 países, um deles o Brasil (KOZAKEVICH, 2016). Com a precária administração dos remédios já existentes foram surgindo cepas com diferentes níveis de resistência aos fármacos antituberculose, sendo necessário a busca por novas moléculas biologicamente ativas e com baixa toxicidade (NOGUEIRA, 2012).

O timol (2-isopropil-5-metilfenol) é um monoterpeno fenólico presente em ervas como tomilho, orégano e manjericão. Esta molécula já é utilizada comumente como agente antisséptico, cicatrizante, conservante de alimentos e aromatizante (MARCHESE, 2016). Foi relatado ótimo resultado antituberculose com concentração inibidora mínima (MIC) de 0,78 µg/ml (ANDRADE-OCHOA, 2015), porém apresenta toxicidade significativa em células intestinais (LLANA-RUIZ-CABELLO, 2014).

N-acilhidrazona é um grupo farmacofórico que possui grande potencial farmacológico antituberculose, é caracterizado por nitrogênio ligado a uma carbonila e a um nitrogênio imínico (SANTOS, 2012). O objetivo do trabalho é sintetizar N-acilhidrazonas combinadas com a unidade terpênica do timol e verificar sua ação antituberculose frente a $Mycobacterium\ tuberculosis\ H_{37}R_{\nu}$ e posteriormente sua citotoxicidade.

MATERIAIS E MÉTODOS

SÍNTESE

As moléculas alvo foram sintetizadas segundo o esquema presente na figura 1 baseada em uma metodologia encontrada na literatura (RAJPUT, 2017).

Figura 1 – Rota de síntese realizada para obtenção dos derivados N-acilhidrazônicos com unidade timol. R1, R2 = aril, alquil.

Fonte: Autoria própria (2020).

Síntese de (2-isopropil-5-metilfenoxi) acetato de metila (1): A princípio, em um balão de fundo redondo, foram adicionados 20 mmol(3,00g) de timol e 30

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

mmol(4,14g) de K₂CO₃. Em seguida, 50 ml de acetona anidra foi adicionada e a mistura reacional foi mantida em refluxo por 5 horas. Após o resfriamento até a temperatura ambiente acrescentou-se gota a gota 20 mmol(1,75ml) de cloroacetato de metila e manteve-se a reação por mais 16 horas sob refluxo. Por fim, o solvente foi evaporado e adicionou-se água gelada. O produto foi removido utilizando 3 extrações com 40ml de diclorometano. Traços de umidade presentes na fração orgânica foram removidos com adição de CaCl₂. Após filtração e evaporação do solvente foram obtidos 18 mmol(3,91g) de (2-isopropil-5-metilfenoxi) acetato de metila (1) com o aspecto de um óleo amarelado sob rendimento de 88%.

Síntese da (2-isopropil-5-metilfenoxi) aceto-hidrazida (2): 18 mmol(3,91g) de (2-isopropil-5-metilfenoxi) acetato de metila (1), 108 mmol(3,98ml) de hidrazina 80% e 30 ml de etanol foram refluxados por 3 horas em um balão de fundo redondo. A progressão da reação foi acompanhada por cromatografia em camada delgada (CCD) na qual se utilizou uma fase móvel composta por 90% hexano e 10% acetato de etila usando iodo como revelador. A reação foi filtrada e efetuou-se lavagens com água e hexano, e, após a evaporação do solvente obteve-se 5 mmol(1,10g) de hidrazida de timol na forma de cristais brancos apresentando 28% de rendimento.

Preparação das N-acilhidrazonas de timol (3): Em um balão de fundo redondo misturou-se 0,45 mmol(1,10g) da (2-isopropil-5-metilfenoxi) aceto-hidrazida (2) juntamente com 0,45 mmol de um composto carbonilado (4-nitrobenzaldeído), 20 ml de metanol e 3 gotas de ácido acético. A mistura reacional foi mantida sob refluxo por 2 horas. O andamento da reação foi analisado por CCD utilizando como fase móvel uma solução 70% hexano e 30% acetato de etila. Ao final o produto foi recristalizado em etanol gerando um rendimento de 95%.

EQUIPAMENTOS

Os dados de ressonância magnética nuclear (RMN) foram registrados por um espectrômetro Bruker localizado na Universidade Estadual de Londrina onde os espectros de ¹H foram feitos em 400MHz enquanto os de ¹³C em 100MHz, ambos usaram tetrametilsilano como referência e CDCl₃ ou DMSO-d6 como solvente. Para a análise foi utilizado o *software* iNMR.

Os espectros de infravermelho foram realizados na Universidade Tecnológica Federal do Paraná Câmpus Londrina (UTFPR-LD) por um espectrômetro Perkin Elmer modelo Spectrum Two acoplado a um modulo de reflexão total atenuada (ATR/FTIR) operando no intervalo de 4000 a 400 cm⁻¹. Na visualização dos espectros foi usado o *software* SpectraGryph.

O ponto de fusão foi obtido através do determinador de ponto de fusão Microquímica modelo MQAPF-302 com faixa de temperatura até 350°C localizado na UTFPR-LD.

PARÂMETROS IN SILICO (ADME/T)

Para o estudo de propriedades moleculares vinculadas a absorção, distribuição, metabolismo, excreção e toxicidade no corpo humano foi realizado

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

observações *in silico* utilizando a plataforma online OSIRIS Property Explorer. Esses parâmetros auxiliam a verificar a possibilidade dos candidatos a fármacos serem absorvidos quando administrados de forma oral. Algumas conclusões foram dadas a partir da regra dos cinco de Lipinski. O estudo foi feito com base nas moléculas propostas que estão presentes na figura abaixo:

Figura 2 – Moléculas propostas para o estudo.

Fonte: Autoria própria (2020).

RESULTADOS E DISCUSSÃO

SÍNTESE

Foram sintetizados 2 compostos do total de 11 *N*-acilhidrazonas previstas. A rota de síntese resultou em bons rendimentos com exceção da preparação de (2-isopropil-5-metilfenoxi) aceto-hidrazida (2) na qual foi observado na literatura grande variação na proporção de éster/hidrazina, isto é diretamente vinculado aos efeitos eletrônicos dos grupos conectados a carbonila influenciando na sua eletrofilicidade. Outro ponto avaliado através da RMN foi a presença de timol em meio ao éster, isto indica a necessidade de se estabelecer cuidados mais rigorosos com a umidade no meio reacional.

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

Na síntese de formação de hidrazonas de benzaldeídos foram utilizados a princípio 1 gota de H₂SO₄ concentrado como catalisador, porém segundo informações observadas nos espectros de RMN o produto obtido não condizia com a molécula proposta para a reação. Alguns testes foram feitos e resultaram na seguinte observação:

Figura 3 – Resultados obtidos de uma mesma reação com diferentes catálises.

Fonte: Autoria própria (2020).

DADOS ESPECTROSCÓPICOS

2-isopropil-5-metilfenol (timol): IV(ATR): (OH) 3226, (CH_{Alifático}) 2960; 1 H RMN(400MHz, CDCl₃): δ_{H} 1.30(6H, d, J=7.2Hz), 2.33(3H, s), 3.23(1H, hep, J=7.2Hz), 4.79(1H, s), 6.62(1H, s), 6.80(1H, d, J=8.0Hz), 7.15(1H, d, J=8.0Hz); 13 C RMN(100MHz, CDCl₃): δ_{C} 20.9, 22.7, 26.7, 116.1, 121.7, 126.3, 131.4, 136.6, 152.5.

(2-isopropil-5-metilfenoxi) acetato de metila (1): IV(ATR): (CH_{Alifático}) 2963, (C=O) 1743; 1 H RMN(400MHz, CDCl₃): $\delta_{\rm H}$ 1.31(6H, m), 2.35(3H, s), 3.46(1H, m), 3.88(3H, s), 4.72(2H, s), 6.63(1H, s), 6.84(1H, d, J=7.6Hz), 7.19(1H, d, J=7.6Hz); 13 C RMN(100MHz, CDCl₃): $\delta_{\rm C}$ 21.3, 22.8, 26.7, 52.3, 65.7, 112.4, 122.5, 126.3, 134.7, 136.4, 155.0, 170.1(C=O).

2-(2-isopropil-5-metilfenoxi) aceto-hidrazida (2): pf. 94,9°C; IV(ATR): (NH) 3322, (CH_{Alifático}) 2955, (C=O) 1675; 1 H RMN(400MHz, CDCl₃): δ_H 1.25(6H, d, J=6.8Hz), 2.34(3H, s), 3.27(1H, hep, J=6.8Hz), 3.99(2H, s, NH2), 4.60(2H, s), 6.62(1H, s), 6.85(1H, d, J=8.0Hz), 7.15(1H, d, J=8.0Hz), 7.77(1H, s, NH); 13 C RMN(100MHz, CDCl₃): δ_C 21.2, 22.9, 26.7, 67.4, 112.7, 122.9, 126.3, 133.9, 136.9, 154.1, 169.0(C=O).

2-(2-Isopropil-5-metilfenoxi) -N '-[(E)-(4-nitrofenil) metileno] aceto-hidrazona (3a): pf. 153,4°C; 1 H RMN(400MHz, DMSO-d6): δ_H 1.17(6H, d, J=7.2Hz), 2.27(3H, s), 3.33(1H, hep, J=7.2Hz), 4.70(2H, s), 6.68(1H, m), 6.72(1H, m), 7.08(1H, m), 7.98(2H, d, J=8.8Hz), 8.12(1H, s, HC=N), 8.27(2H, d, J=8.8Hz), 11.6(1H, s, NH); 13 C RMN(100MHz, DMSO-d6): δ_C 21.4, 23.1, 26.5, 65.5, 112.8, 121.8, 124.4, 126.1, 128.3, 133.7, 136.1, 140.8, 141.8(C=N), 148.2, 155.6, 170.1(C=O).

(1,2) -Bis (4-tercbutil benzilideno) hidrazina (Produto inesperado): IV(ATR): (CH_{Alifático}) 2950, (C=N) 1603; 1 H RMN(400MHz, CDCl₃): δ_H 1.38(18H, s), 7.50(4H, d, J=8.4Hz), 7.80(4H, d, J=8.4Hz), 8.68(2H, s); 13 C RMN(100MHz, CDCl₃): δ_C 31.2, 35.0, 125.7, 128.3, 131.4, 154.6, 161.6(C=N).

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

DADOS DE ADME/T

As moléculas propostas foram processadas pelo *software* OSIRIS gerando seus respectivos resultados, vale a pena ressaltar que o *software* utiliza de ferramentas vinculadas a banco de dados para alertar sobre toxicidade e *druglikeness*, logo as informações geradas mesmo apresentando grande probabilidade não expressam fielmente a realidade.

Quadro 1 – Risco molecular de gerar efeitos indesejáveis.

Composto	Mutagênico	Tumorigênico	Irritante	Efeito reprodutivo
2	Baixo	Alto	Baixo	Baixo
3a	Baixo	Baixo	Baixo	Baixo
3b	Baixo	Baixo	Baixo	Baixo
3c	Baixo	Baixo	Baixo	Baixo
3d	Baixo	Baixo	Baixo	Baixo
3e	Baixo	Baixo	Baixo	Baixo
3f	Baixo	Baixo	Baixo	Baixo
3g	Baixo	Baixo	Baixo	Baixo
3h	Baixo	Baixo	Baixo	Baixo
3i	Baixo	Baixo	Baixo	Médio
3j	Baixo	Baixo	Baixo	Baixo

Fonte: Autoria própria (2020).

Com exceção de 2 e 3i os compostos apresentam baixo risco toxicológico tornando a princípio bons indicativos como possíveis fármacos.

Quadro 2 – Dados das propriedades moleculares.

Composto	Massa molar (g/mol)	Aceptor de ligações H	Doador de ligações H	Ligações rotativas
2	222,29	4	2	4
3a	355,39	7	1	7
3b	328,39	4	1	6
3c	344,84	4	1	6
3d	326,39	5	2	6
3e	340,42	5	1	7
3f	366,50	4	1	7
3g	354,45	5	1	7
3h	351,40	6	2	5
3i	320,39	6	1	8
3j	356,51	4	1	5

Fonte: Autoria própria (2020).

Quadro 3 – Previsão das propriedades moleculares.

Composto	cLogP	TPSA (²)	Druglikeness	Drug-score
2	1,09	64,35	-8,31	0,29
3a	3,39	96,51	-8,60	0,42
3b	4,41	50,69	0,71	0,65
3c	4,91	50,69	2,40	0,68
3d	3,96	70,92	1,82	0,76
3e	4,24	59,92	1,84	0,73

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

Composto	cLogP	TPSA (²)	Druglikeness	Drug-score
3f	5,89	50,69	-1,55	0,35
3g	4,18	59,92	0,93	0,67
3h	2,93	79,79	3,16	0,86
3i	2,65	76,99	-3,96	0,37
3j	4,89	50,69	-3,09	0,37

Fonte: Autoria própria (2020).

Segundo a regra dos 5 e suas extensões, uma molécula com boa absorção e baixa toxicidade deve apresentar os seguintes requisitos: apresentar 5 ou menos doadores de ligações de hidrogênio, 10 ou menos receptores de ligações de hidrogênio, cLogP (coeficiente de partição octanol/água) menor ou igual a 5, peso molecular inferior a 500 g/mol, TPSA(área da superfície polar) abaixo de 140² e conter menos que 10 ligações rotativas (SANTOS, 2018). Somente o composto 3f violou um dos requisitos apresentado anteriormente.

O software OSIRIS oferece os parâmetros druglikeness que indica a semelhança a um fármaco e drug-score que avalia os dados em geral da molécula, nestes se deseja um valor positivo e para o outro próximo a 1 respectivamente. Os compostos 3b, 3c, 3d, 3e, 3g e 3h apresentaram bons resultados com destaque para 3h com valores muito promissores.

O ensaio antituberculose para M. tuberculosis foi realizado pelo método REMA apenas para o timol, onde foi observado um resultado promissor na atividade com MIC de 7,8 μ g/mL.

CONCLUSÃO

Devido a pandemia de COVID-19 não foi possível realizar o término dos trabalhos, faltando concluir as sínteses de 9 N-acilhidrazonas juntamente de suas confirmações via espectroscopia e a realização dos ensaios biológicos para a avaliação da ação farmacológica. A rota de síntese foi ajustada e analisada com métodos espectroscópicos gerando por fim 2 moléculas de um total de 11 propostas. As previsões ADME/T foram realizadas e proporcionaram em geral bons resultados com enfoque para o composto 3h. Com relação ao ensaio anti-TB o resultado promissor revelado para o timol estimula a continuidade do trabalho com o desenvolvimento de novos derivados sintéticos e estudos mais detalhados sobre a ação antituberculose para os compostos obtidos.

AGRADECIMENTOS

Deixo meus agradecimentos a meu orientador Fábio Vandresen bem como a UTFPR por se tornar possível a realização desse trabalho, agradeço também a UEL por ter contribuído através do espectrômetro de RMN.

REFERÊNCIAS

KOZAKEVICH, Gabriel Vilella; DA SILVA, Rosemeri Maurici. Tuberculose: revisão de literatura. **Arquivos Catarinenses de Medicina**, v. 44, n. 4, p. 34-47, 2016.

23 a 27 de Novembro | Toledo - PR

NOGUEIRA, Antônio Francisco et al. Tuberculose: uma abordagem geral dos principais aspectos. **Rev. Bras. Farm**, v. 93, n. 1, p. 3-9, 2012.

MARCHESE, Anna et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. **Food chemistry**, v. 210, p. 402-414, 2016.

ANDRADE-OCHOA, Sergio et al. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. **BMC complementary and alternative medicine**, v. 15, n. 1, p. 332, 2015.

LLANA-RUIZ-CABELLO, María et al. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. **Food and chemical toxicology**, v. 64, p. 281-290, 2014.

SANTOS, Fernanda da C. et al. Tuberculosis: Finding a New Potential Antimycobacterium Derivative in a Aldehyde—Arylhydrazone—Oxoquinoline Series. **Current microbiology**, v. 65, n. 4, p. 455-460, 2012.

RAJPUT, Jamatsing D.; BAGUL, Suresh D.; BENDRE, Ratnamala S. Design, synthesis, biological screenings and docking simulations of novel carvacrol and thymol derivatives containing acetohydrazone linkage. **Research on Chemical Intermediates**, v. 43, n. 8, p. 4893-4906, 2017.

SANTOS, Victória Laysna dos Anjos; GONSALVES, Arlan de Assis; ARAÚJO, Cleônia Roberta Melo. Didactic approach for the development of bioative molecules: Lipinski's Five-Rule and preparation of 1,3,4-oxadiazol heterocylic in domestic microwave oven. **Química Nova**, v. 41, n. 1, p. 110-115, 2018.