

23 a 27 de Novembro | Toledo - PR

https://eventos.utfpr.edu.br//sicite/sicite2020

Síntese de pós de alumina usando clara de ovo como agente complexante

Synthesis of alumina powders using egg white as complexing agent

RESUMO

Novos métodos de síntese química vêm sendo pesquisados para produzir materiais cerâmicos com bom desempenho em suas aplicações. Nesse contexto, o método da clara de ovo tem se mostrado uma boa alternativa para complexação de cátions, de forma econômica e sustentável. O objetivo desse trabalho foi sintetizar pós de alumina utilizando clara de ovo como complexante. O nitrato de alumínio foi utilizado como fonte de cátions alumínio. A clara de ovo foi caracterizada por análise térmica (ATD/TG), e os percursores foram calcinados a temperaturas variando entre 900°C e 1100°C e caracterizados por difratometria de raios X (DRX). Os resultados da síntese de alumina mostraram que a técnica foi eficiente para a obtenção dos pós, sendo que a DRX mostrou redução na temperatura de formação dos cristais, com quase total transformação para fase alfa a 1100°C. A ATD/TG da clara de ovo demonstrou a decomposição das proteínas a 250°C e oxidação dos sais minerais na faixa de 558°C-788°C. Com base nestes resultados preliminares, observou-se um bom potencial deste método na produção de pós ultrafinos de alumina, com obtenção da fase alfa-alumina a temperaturas menores que nos processos industriais.

PALAVRAS-CHAVE: Síntese. Clara de ovo. Óxidos nanoestruturados. Alumina.

ABSTRACT

New methods of chemical synthesis have been researched to produce ceramic materials with good performance in their applications. In this context, the egg white method has proved to be a good alternative for complexing cations, in an economical and sustainable way. The objective of this work was to synthesize alumina powders using egg white as a complexing agent. Aluminum nitrate was used as a source of aluminum cations. Egg white was characterized by thermal analysis (DTA/TG), and the precursors were calcined at temperatures ranging between 900°C and 1100°C and characterized by X-ray diffractometry (XRD). The results of the alumina synthesis showed that the technique was efficient for obtaining the powders, and the XRD showed a reduction in the temperature of formation of the crystals, with almost total transformation to the alpha phase at 1100°C. The DTA/TG of egg white demonstrated the decomposition of proteins at 250°C and oxidation of mineral salts in the range of 558°C-788°C. Based on these partial results, a good potential of this method was observed in the production of ultrafine powders of alumina, obtaining alphaalumina phase at lower temperatures than in industrial processes.

KEYWORDS: Synthesis. Egg white. Nanostructured oxides. Alumina.

Bruna Carolina Borges Pinto Brunacarolina390@gmail.com Universidade Tecnológica Federal do Paraná, Londrina, Paraná, Brasil

Raphael Euclides Prestes Salem raphaelsalem@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Londrina, Paraná, Brasil

Recebido: 19 ago. 2020. **Aprovado:** 01 out. 2020.

Direito autoral: Este trabalho está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional.

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

INTRODUÇÃO

O óxido de alumínio ou alumina é um composto químico representado pela fórmula Al_2O_3 . entre as suas propriedades estão a refratariedade, resistência mecânica e a abrasão. É utilizado como material refratário, isolante elétrico (POLITCHUK et al., 2012) e suporte para dentes artificiais (RATNER et al., 2012). A alumina está presente em mais de 15 fases metaestáveis (CARTAXO et al., 2011) sendo a alfa-alumina ou córindon (α - Al_2O_3), com estrutura hexagonalromboédrica, a fase da alumina mais estável termodinamicamente, formada normalmente acima de 1000°C. As aluminas formadas abaixo de 1000°C a partir dos reagentes de hidróxidos de alumínio cristalinos são denominadas de aluminas de transição e podem possuir ânions de hidroxila como impureza na sua estrutura. Possuem área específica elevada e são instáveis termodinamicamente (MARCOS, 2008).

A síntese química com clara do ovo como um meio de reação é interessante por ser um método econômico, mais sustentável, além das suas ótimas funcionalidades. Em torno de 60% do total em peso do ovo é representado pela clara, sendo esta composta por 88% de água, 10,6% de proteínas, 0,6% de minerais e 0,8% de carboidratos (LIU; et al., 2019). Dentre as propriedades da clara de ovo inclui-se a formação de espuma, gelificação, solubilidade em água e habilidade de se associar aos íons metálicos. As principais proteínas englobam as globulinas, ovotransferrina, ovomucoide, lisozima, ovomucina e a ovalbumina, que representa cerca de 54% da quantidade total de proteínas da clara do ovo (HUNTINGTON; STEIN, 2001; LIU et al., 2019).

Na síntese de óxidos metálicos, basicamente é produzida uma mistura de clara de ovo e sais solúveis. Os íons metálicos se ligam aos grupos ativos das proteínas, formando um sol uniformemente disperso que, por evaporação isotérmica ou irradiação por micro-ondas, se transforma no gel com os íons dispersos. Este pode passar por secagem, moagem e calcinação (HUNTINGTON; STEIN, 2001). Nos últimos anos, diversos materiais têm sido sintetizados usando o método da clara de ovo com resultados promissores. Por exemplo, Sabouri, et al. (2020) utilizaram a clara de ovo para obter o óxido de níquel II (NiO). Bagheri et al. (2013) usaram a clara de ovo para sintetizar o dióxido de titânio (TiO₂) e Ningsih et al. (2019), que utilizaram a clara de ovo para obter o óxido de zinco (ZnO).

Com base no exposto, o objetivo geral deste trabalho foi realizar a síntese de pós ultrafinos de alumina, por meio de um método de síntese química simplificado e econômico, utilizando a clara de ovo como meio de complexação.

MATERIAIS E MÉTODOS

Para realizar a síntese da alumina, dissolveu-se nitrato de alumínio nonahidratado (Al(NO₃)₃.9H₂O), (marca Dinâmica, Brasil) em pouca quantidade de água destilada, colocando-se em agitação em uma placa aquecedora. Após alguns minutos, foram adicionados aproximadamente 100 mL de clara de ovo recémextraída, permanecendo em agitação e aquecimento à temperatura de 100°C por 1 hora. Após esse período, o agitador foi desligado e a temperatura ajustada para 200°C por mais 3 horas para secagem do percursor.

23 a 27 de Novembro | Toledo - PR

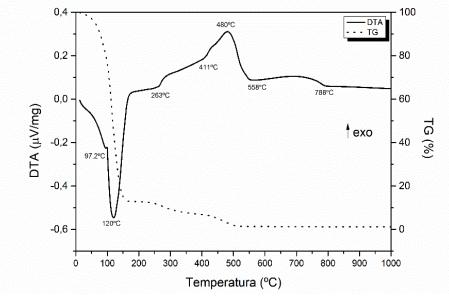
Após a secagem em placa aquecedora, o precursor foi colocado em estufa a 105°C por 24 horas, para eliminação de gases e umidade residual. Em seguida, os precursores foram desaglomerados em almofariz de ágata e pré-calcinados à temperatura de 500°C com taxa de aquecimento de 2°C/min, em forno tipo mufla. A calcinação do material pré-calcinado também foi realizada em forno mufla de alta temperatura (com resistência de MoSi₂, marca Inti, modelo 1700, Brasil), ao ar, às temperaturas de 900°C, 1000°C e 1100°C. Depois de calcinados, os pós foram novamente desaglomerados em almofariz de ágata, peneirados e caracterizados.

Para caracterização física da clara de ovo foi feita a análise térmica diferencial associada a termogravimetria (ATD/TG). As duas análises foram realizadas de forma simultânea em um equipamento de análise térmica da marca TA Instruments, modelo SDT 2960, na faixa de temperatura de ambiente a 1000°C, utilizando atmosfera de ar sintético com taxa de aquecimento de 2°C/min.

A caracterização estrutural dos pós calcinados foi realizada, até o momento, utilizando a técnica de difratometria de raios X (DRX). As amostras dos pós calcinados foram analisadas em um difratômetro de raios X da marca Shimadzu, modelo XRD-6000, com radiação $K_{\alpha 1}(Cu)=1,54060$ Å, com tensão de 40 kV e corrente de 40 mA. A velocidade do goniômetro utilizada foi de d(20)/dt = 2°/min, variando 20 de 5° a 90°.

RESULTADOS E DISCUSSÕES

Caracterização da clara de ovo. A Figura 1 apresenta o termograma da clara de ovo, obtida pela técnica de análise térmica diferencial associada à termogravimetria. Observa-se, pelo gráfico de TG, que a primeira perda de massa foi de aproximadamente 90%, correspondendo a um pico endotérmico significativo na ATD que corresponde à eliminação de água. Após esse fenômeno, observa-se uma decomposição das proteínas presentes na clara de ovo em três etapas, a cerca de 250°C, 420°C e 550°C. A massa residual ao final da análise correspondeu a menos de 2% da massa inicial, provavelmente correspondendo aos óxidos dos sais minerais restantes na amostra. A ATD mostrou, após a evaporação da água, inflexões às temperaturas aproximadas de 263°C e 411°C, correspondendo às mudanças energéticas associadas à desnaturação das proteínas, e um pico exotérmico a aproximadamente 480°C mostra, associado a um degrau de perda de massa, a eliminação de parte dessas proteínas. As alterações na curva de DTA acima dessa temperatura, identificadas na forma de uma banda sutil entre 558°C e 788°C, provavelmente se devem à oxidação dos sais minerais residuais, bem como rearranjo das ligações nessas substâncias.



23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

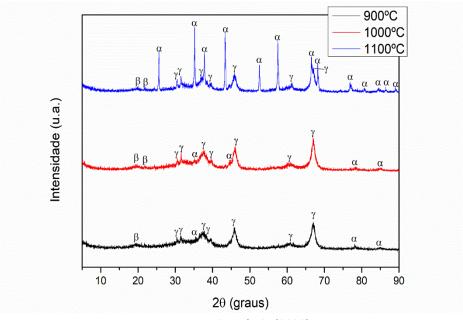
Figura 1 – Termograma (ATD/TG) da clara de ovo recém-extraída da temperatura ambiente até 1000°C, obtido em atmosfera de ar sintético.

Fonte: Autoria própria (2020).

Caracterização dos pós calcinados. A Figura 2 mostra o difratograma de raios X das amostras de alumina sintetizadas pelo método da clara de ovo e calcinadas a 900°C, 1000°C e 1100°C.

A 900°C observa-se uma quantidade maior de picos referentes à alumina de transição γ (gama), enquanto a fase α (alfa) foi identificada com picos de baixa intensidade. Para a temperatura de 1000°C, o padrão apresenta semelhanças ao anterior, ainda com baixa cristalinidade (baixa intensidade e maior largura dos picos) porém, com um leve aumento na intensidade de alguns picos na fase γ e início de um aparecimento mais expressivo da fase α . A 1100°C, a maioria dos picos de difração são mais intensos e correspondem à fase cristalina α . Além disso, permanecem alguns picos que correspondem a fase γ . Nas três temperaturas de calcinação foram identificados traços da fase β cuja intensidade aumentou ligeiramente com o aumento da temperatura.

A presença da fase α a 900°C, mesmo com pouca intensidade, indica o início da cristalização. O aparecimento mais significativo da fase α (indicando a cristalização do material) a 1000°C e sua consolidação a 1100°C acontece, porque essa estrutura é mais difícil de se formar devido às transformações reconstrutivas que ocorrem da alumina de transição para a α (SANTOS, SANTOS, TOLEDO, 2000). A presença de picos de menor intensidade a 1100°C da fase γ indica que, apesar de significativa a transformação $\gamma \rightarrow \alpha$, esta não ocorreu completamente. A fase β presente nas temperaturas mais altas possui sódio em sua composição (Na₂O.11Al₂O₃) não é considerada uma alumina de transição (SANTOS, SANTOS, TOLEDO, 2000). A sua presença em baixa intensidade provavelmente se deve à existência de uma certa quantidade de sódio na clara de ovo, que contribuiu para a síntese de núcleos dessa fase durante o processo de calcinação, e sua consolidação ocorre de forma mais significativas a temperaturas maiores que 1200°C (SANTOS, SANTOS, TOLEDO, 2000).



23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

Figura 2 – Difratograma de raios X do precursor de alumina calcinado às temperaturas de 900°C, 1000°C e 1100°C.

Fonte: Autoria própria (2020).

As fases metaestáveis da alumina incluem a γ (gama), θ (teta), η (eta), δ (delta), χ (chi), κ (kappa) e β (beta). Aluminas de transição que são formadas antes da α -alumina são influenciadas pelas condições de processamento, grau de cristalinidade, tipo de percursor e presença de impurezas. Os resultados das difrações para a fase α sugerem que a sequência de transformação foi $\gamma \rightarrow \alpha$ sem a presença de outras fases. Esse semelhante caminho para a síntese de α -Al $_2$ O $_3$ utilizando o percursor nitrato de alumínio nona-hidratado foi relatado por Mota, et al. (2019) e Su, Chen e Zhou (2012). Também era esperado a presença de outras fases, assim como foi mencionado no trabalho de Salem et al. (2014), que cita a transformação da α -alumina a partir da γ -alumina na seguinte sequência: $\gamma \rightarrow \delta \rightarrow \theta \rightarrow \alpha$., no entanto, a difração de raios X não permitiu identificar com clareza a presença das fases δ e θ , uma vez que os picos das fases de transição são largos e de baixa intensidade.

É importante ressaltar que, devido à pandemia de COVID-19 e subsequente interrupção das atividades no final de março/2020, os trabalhos presenciais foram suspensos. Sendo assim, os resultados apresentados neste relatório são preliminares, estando o projeto em andamento.

CONCLUSÕES

Levando-se em conta os resultados apresentados, conclui-se que a utilização da clara de ovo permitiu que a α -alumina fosse identificada a 900°C e sua consolidação a 1100°C. A diminuição na temperatura de formação de fase favorece a produção de cristalitos cujo tamanho em escala nanométrica permite maximizar as propriedades do material. Além disso, outro benefício de empregar a clara de ovo como meio complexante é o baixo custo e facilidade no processo de síntese

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

do pó. A desvantagem desse método está na formação de aglomerados fortes e formato de partículas irregulares. Assim, como sugestão de trabalho futuro seria o processamento subsequente do pó para desaglomeração e uniformização das partículas. Ressalta-se que os resultados aqui apresentados são preliminares, dada a interrupção dos trabalhos devido à pandemia de COVID-19.

AGRADECIMENTOS

Os autores agradecem ao Laboratório Multiusuário da UTFPR — câmpus Londrina, por realizar a difratometria de raios X e ao Laboratório Multiusuário da UEPG, por realizar a análise térmica.

REFERÊNCIAS

BAGHERI, S.; SHAMELI, K.; HAMID, S. B. A. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. **Journal of Chemistry**, v. 2013, p. 1-5, 2013.

CARTAXO, J. M.; GALDINO, M. N.; MENEZES, R. R.; FERREIRA, H. S.; NEVES, G. A. Síntese de alumina-α utilizando acetato de alumínio. **Revista Eletrônica de Materiais e Processos**, Campina Grande, v. 6.3, n. 3, p. 194-197, 2011.

HUNTINGTON, J. A.; STEIN, P. E. Structure and properties of ovalbumin. **Journal of Chromatography B: Biomedical Sciences and Applications**, v. 756, p. 189-198, 2001.

LIU, X.; LI, K.; WU, C.; ZHOU, Y.; PEI, C. Egg white-assisted preparation of Inorganic functional materials: a sustainable, eco-friendly, low-cost and multifunctional method. **Ceramics International,** v. 45, p. 23869-23889, 2019.

MARCOS, K. N. P. Área específica, morfologia estrutura de aluminas obtidas a partir de alguns percusores. 2008. Tese (Doutorado em Engenharia). Escola Politécnica da Universidade de São Paulo, São Paulo, 2008.

MOTA, M. F.; SANTOS, A. M. C.; FARIAS, R. M. C.; NEVES, G. A.; MENEZES, R. R. Synthesis and characterization of alumina fibers using solution blow spinning. **Cerâmica**, v. 65, n. 374, p. 190-193, 2019.

NINGSIH, S. K. W.; NIZAR, U K.; BAHRIZAL, N. E.; SUCI, R. F. Effect of egg white for synthesis and characterization of Al-doped ZnO nanoparticles by using sol-gel method. **Journal of Physics: Conf Series**, [s.v.], p.1-10, 2019.

POLITCHUK, J. O.; LIMA, N. B.; LAZAR, D. R. R.; USSUI, V.; YOSHITO W. K. Síntese de pós de alumina por precipitação de hidróxidos e tratamento solvotérmico.ln:

23 a 27 de Novembro | Toledo - PR

CONGRESSO BRASILEIRO DE CERÂMICA, 56., 2012, Curitiba, pp. 330-341. **Anais...** Curitiba: **ABCERAM**, 2012.

RATNER, B. D.; HOFFMAN, A. S.; SCHOEN, F. J.; LEMONS, J. E. **Biomaterials science**: an Introduction to materials in medicine. 3. ed. Oxford: Elsevier, 2012.

SABOURI, Z.; AKBARI, A.; HOSSEINI, H. A.; KHATAMI, M.; DARROUDI, M. Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. **Polyhedron**, v.178, 114351, 2020.

SALEM, R. E. P.; CHINELATTO, A. S. A.; CHINELATTO, A. L. Síntese de pós de alumina por meio de um método pechini modificado com adição de sementes em diferentes atmosferas de calcinação. **Cerâmica**, v. 60, p.108-116, 2014.

SANTOS, P. S.; SANTOS, H. S.; TOLEDO, S. P. Standard transition aluminas: electron microscopy studies. **Materials Research**, São Carlos, v. 3, n. 4, p. 104-114, 2000.

SU, X.; CHEN, S.; ZHOU, Z. Synthesis and characterization of monodisperse porous α -Al2O3 nanoparticles. **Applied Surface Sciences**, v. 258, p. 5712-5715, 2012.