

X Seminário de Extensão e Inovação XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

https://eventos.utfpr.edu.br//sicite/sicite2020

Massa seca de plantas de cobertura sob sistemas de rotação em área orgânica

Dry mass of cover plants under rotation systems in organic area

RESUMO

Aliado ao aumento do consumo de produtos mais saudáveis, menor impacto ambiental e social, a produção orgânica vêm se impulsionando. A visão do sistema como um todo aliado a rotação de culturas para obtenção de palhada, torna-se primordial para a sustentabilidade do Sistema Plantio Direto. Objetivou-se avaliar, sob área orgânica, a produção de massa seca (MS) de plantas de cobertura estivais e hibernais em sistemas de rotação. O experimento foi conduzido em delineamento de blocos ao acaso, em parcelas subdividas com três repetições. As parcelas principais compostas pelos sistemas de rotações com plantas de interesse comercial (soja e feijão) e plantas hibernais (aveia preta; aveia branca; trigo; centeio; ervilhaca; nabo forrageiro) e nas subparcelas alocadas as plantas de cobertura estivais (crotalária juncea; milheto; guandu anão; lab-lab). O milheto proporcionou a maior média (9,4 Mg ha⁻¹) de MS no período outonal. A aveia preta solteira e consorciada com centeio produziram, respectivamente 7,9 e 6,9 Mg ha⁻¹. Os maiores valores para a MS total foi obtida nas rotações com soja 1 e soja 2 (13,1 e 11,6 Mg ha⁻¹).

PALAVRAS-CHAVE: Cobertura de solo. Rotação de culturas. Sustentabilidade.

ABSTRACT

Combined with increased consumption of healthier products, less environmental and social impact, organic production has been boosting. The vision of the system as a whole, combined with crop rotation to obtain straw, becomes essential for the sustainability of the No-Till System. The objective was to evaluate, under organic area, the dry matter (DM) production of summer and winter cover plants in rotation systems. The experiment was carried out in a randomized block design, in plots subdivided with three replications. The main plots composed of the rotation systems with plants of commercial interest (soy and beans) and winter plants (black oats; white oats; wheat; rye; vetch; turnip) and in the subplots allocated the summer cover plants (crotalaria juncea; millet; dwarf guandu; lablab). Millet provided the highest average (9,4 Mg ha⁻¹) of DM in the autumn period. Single black oats and intercropped with rye produced 7,9 and 6,9 Mg ha⁻¹, respectively. The highest values for total DM were obtained in the rotations with soy 1 and soy 2 (13,1 and 11,6 Mg ha⁻¹).

KEYWORDS: Ground cover. Crop rotation. Sustainability.

Felipe Lunardelli Sandrin felipesandrin@outlook.com Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil

Paulo Cesar Conceição paulocesar@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil

Maicon Reginatto maicon.iala@gmail.com Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil

Maiara Karini Haskel maiara.haskel@hotmail.com Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR,

Cidimar Cassol cidiutfpr@hotmail.com Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR,

Brasil Caroline Aparecida Seleprin

Carol.dresch@outlook.com Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil

Recebido: 19 ago. 2020. **Aprovado:** 01 out. 2020.

Direito autoral: Este trabalho está licenciado sob os termos da Licença Creative Commons-Atribuição 4.0 Internacional

Dresch

X Seminário de Extensão e Inovação XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

INTRODUÇÃO

O aumento significativo da produção e consumo de produtos orgânicos no mundo está associado a procura por alimentos com maiores níveis de segurança e saúde aos consumidores, além do menor impacto ambiental e social, tendo sido impulsionado pela alta demanda nos países da Europa, América do Norte e China. Para atender essa demanda, entre os anos de 2000 e 2017, a agricultura orgânica elevou-se de 15 milhões/ha para aproximadamente 69,8 milhões/ha (LIMA et al., 2020).

O sistema de produção orgânica de alimentos requer entre outras exigências, o manejo sustentável dos recursos naturais, com a visão voltada para o sistema como um todo, e não apenas o enfoque na cultura comercial. Desta forma, o manejo correto do solo torna-se de fundamental importância para o melhor desempenho do sistema. Isso nos leva a repensar a forma como está sendo manejado o solo em sistemas de produção orgânica e propor um Sistema Plantio Direto (SPD) no qual devem ser seguidas suas premissas básicas, que são: o mínimo revolvimento do solo; a rotação de culturas e a cobertura permanente do solo, além de promover o manejo integrado de pragas e doenças (MUZILLI, 2002; ADAMS, 2016).

Para cumprir essas exigências do SPD dentro da produção orgânica, é que se faz uso das plantas de cobertura e adubação verde. Essas plantas propiciam melhoria na proteção do solo pela formação de cobertura vegetal; diminuição das oscilações de temperatura em superfície; manutenção da umidade; aumento da infiltração de água, teores de matéria orgânica, supressão de plantas infestantes (CALEGARI, 2004). Bem como realizam a ciclagem de nutrientes, incrementos de teores de carbono orgânico, melhoria da estrutura física e microbiota do solo beneficiando as culturas sucessoras (TIECHER, 2016).

Diante da necessidade de manter a sustentabilidade do SPD na produção orgânica, através da ausência de revolvimento do solo e com sistemas diversificados que englobam rotação de culturas, com plantas de cobertura que proporcionem alta produção de massa seca (MS), objetivou-se avaliar a produção de MS de plantas de cobertura estivais (verão) e hibernais (inverno) em diferentes sistemas de rotação de culturas em área orgânica.

MATERIAL E MÉTODOS

A pesquisa foi realizada na área experimental da Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Dois Vizinhos, sob solo classificado como Latossolo Vermelho (CABREIRA, 2015). O clima, classificado de acordo com Köppen, é Cfa (C= subtropical úmido, com mês mais frio entre 18 e -3°C; f= sempre úmido, com chuva em todos os meses do ano; a= verão quente, com temperatura do mês mais quente superior a 22 °C) (ALVARES *et al.*, 2013).

A área experimental vem sendo conduzida desde o ano 2018 em transição para sistema de produção orgânica, avaliando sistemas de rotação de culturas com plantas de cobertura estivais e hibernais, bem como a produtividade de culturas comerciais. Na Tabela 1 temos a composição do experimento, com suas devidas densidades de plantio e proporção para as misturas de plantas de cobertura hibernais, compreendendo 4 sistemas de rotação na safra principal que

X Seminário de Ext<mark>ensão e Inovação</mark> XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

antecedem as plantas de cobertura estivais. No período da safrinha (outono) as parcelas foram subdivididas em 4 diferentes espécies de plantas de cobertura estivais; e no período de inverno, as parcelas principais recebem 4 tratamentos diferentes com plantas de cobertura hibernais.

Tabela 1- Tratamentos implantados em sistemas de rotação de culturas em área orgânica no ano 2019. UTFPR. Câmpus Dois Vizinhos. 2020.

organica no ano 2019. OTFPR, Campus Dois Vizinnos, 2020.							
CA	TRAT	ESTIVAIS		HIBERNAIS			
	IIIAI	ESP	DP (Kg/ha)	ESP	PP (%)	DP (Kg/ha)	
Soja 1	1	CI	30	AP	100	90	
Soja 1	2	M	20	AP	100	90	
Soja 1	3	GA	40	AP	100	90	
Soja 1	4	LL	46	AP	100	90	
Soja 3	5	CJ	30	AB+T	50+50	60	
Soja 3	6	M	20	AB+T	50+50	60	
Soja 3	7	GA	40	AB+T	50+50	60	
Soja 3	8	LL	46	AB+T	50+50	60	
Soja 2	9	CJ	30	AP+C	60+40	70	
Soja 2	10	M	20	AP+C	60+40	70	
Soja 2	11	GA	40	AP+C	60+40	70	
Soja 2	12	LL	46	AP+C	60+40	70	
Feijão	13	CJ	30	AP+N+E+C	40+30+20+10	70	
Feijão	14	M	20	AP+N+E+C	40+30+20+10	70	
Feijão	15	GA	40	AP+N+E+C	40+30+20+10	70	
Feijão	16	LL	46	AP+N+E+C	40+30+20+10	70	

CA: Cultura antecessora (feijão e soja 1= semeados em 28/09/2018 e 05/10/2018, respectivamente; soja 2 e 3: semeados em 06/11/2018; TRAT= Tratamento; ESP= Espécies; DP= Densidade de plantio; PP= Proporção; CJ= crotalária juncea (Crotalaria juncea); M= milheto (Pennisetum glaucum); GA= guandu anão (Cajanus cajan); LL= lab-lab (Dolichos lablab); AP= aveia preta (Avena strigosa var. BRS139); AB+TDP= aveia branca (Avena sativa var. IPR61); + trigo (Triticun aestivum var. Lenox, duplo propósito); AP+C= aveia preta (Avena strigosa var. BRS139) + centeio (Secale cereale var. BRS Serrano); AP+N+E+C= aveia preta (Avena strigosa var. BRS139) + nabo Forrageiro (Raphanus sativus var. IPR116) + ervilhaca (Vicia villosa var. Ametista) + centeio (Secale cereale var. BRS Serrano). Fonte: Autoria Própria (2020).

O experimento foi conduzido em delineamento experimental de blocos ao acaso, em parcelas subdividas com três repetições. As parcelas principais são compostas pelos sistemas de rotações de plantas de interesse comercial e plantas hibernais como forma de rotação e nas subparcelas alocadas as plantas de cobertura estivais.

As plantas de cobertura estivais foram semeadas posterior a saída das culturas comerciais da safra 2018/2019, no dia 28 de fevereiro, sendo estes realizados em faixas dentro dos blocos, caracterizando as parcelas subdivididas.

A semeadura das espécies hibernais ocorreu de forma mecanizada, na data de 06 de junho de 2019, realizando-se a semeadura no verde com o auxílio de rolos facas acoplados a semeadora, sob as plantas de cobertura estivais, com espaçamento de 0,17m. Não utilizou-se adubação de base, tanto para espécies estivais como hibernais.

X Seminário de Extensão e Inovação XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

A coleta dos materiais para MS foi realizada no estágio de florescimento, previamente ao manejo das mesmas (04/06/19 e 18/09/2019, respectivamente para espécies estivais e hibernais), onde para as hibernais, apenas realizada nas parcelas principais. Utilizou-se um quadrado de dimensões 0,5m x 0,5m (0,25m²) ao acaso nas parcelas, retirando-se todo o material vegetal presente em sua área. Posteriormente foi acondicionados à estufa para secagem por 48 horas em temperatura de 55 C°(+/- 5), posteriormente pesados em uma balança semi-analítica de precisão, para a obtenção da produção de MS.

Os dados obtidos foram submetidos a teste de normalidade (Lilliefors), após a análise de variância (ANOVA) e as médias comparadas pelo teste de Scott-Knott ($p \le 0,05$) (plantas de cobertura estivais) e teste de Tukey ($p \le 0,05$) para as hibernais. As análises foram realizadas utilizando-se o software GENES (CRUZ, 2016).

RESULTADOS E DISCUSSÕES

Não houve interação entre os sistemas de rotação e as plantas de cobertura estivais e sim, diferença significativa a 1% nas parcelas subdivididas com plantas de cobertura estivais para a variável MS das mesmas (Tabela 2).

A maior média observada foi verificada com a utilização da cultura do milheto, acumulando alto potencial de MS (9,4 Mg ha⁻¹). Esses resultados corroboram com os encontrados por Link *et al.* (2020) no sudoeste do Paraná, onde o milheto se destacou pelo elevado acúmulo de biomassa (8,5 e 9,1 Mg ha⁻¹) para os anos 2018 e 2019, respectivamente, enfatizando o potencial do milheto no período de entressafra soja-trigo.

O mesmo autor Link *et al.* (2020) observou na estressafra milho-trigo valores de 3,7 Mg ha⁻¹, para a crotalária juncea (ano 2018), e de 5,0 Mg ha⁻¹, para o lab-lab (ano 2019). Valores semelhantes foi encontrado no presente trabalho, respectivamente para crotalária juncea e lab-lab, de 3,9 e 4,1 Mg ha¹.

Tabela 2- Médias para produção de massa seca (MS) (Mg ha-1) por plantas de cobertura estivais em sistemas de rotação de culturas em sistema orgânico no ano 2019. UTFPR, Câmpus Dois Vizinhos, 2020.

	Soja 1	Soja 3	Soja 2	Feijão	Média	CV(%)
CJ	^{ns} 4,0	3,9	3,1	4,7	3,9 b**	
M	8,5	10,5	9,9	8,9	9,4 a	18,5
GA	4,3	4,1	2,8	3,9	3,8 b	10,5
LL	3,7	4,5	4,1	4,1	4,1 b	
Média	^{ns} 5,1	5,7	5,0	5,4		25,2

Médias seguidas de mesma letra minúscula na coluna, não diferem entre si, pelo teste de Skot Knot a 5% de probabilidade. ns: Não significativo. ** significativo a e p≤0,01. Onde: CJ= crotalária juncea; M= milheto; GA= guandu anão; LL= lab-lab. Fonte: Autoria Própria (2020).

De acordo com a Tabela 3, verifica-se que os tratamentos AP e AP+C apresentaram maiores valores, 7,9 e 6,9 Mg ha⁻¹, respectivamente, sendo estatisticamente iguais.

X Seminário de Ext<mark>ensão e Inovação</mark> XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

CÂMPUS TOLEDO

O tratamento contendo AP+N+E+C, com produção de MS a 4,1 Mg ha⁻¹, sendo estatisticamente igual ao tratamento com AP+C e estatisticamente igual ao tratamento AB+TDP, que apresentou o menor rendimento médio de MS, com valor de 2,5 Mg ha⁻¹.

Tabela 3 - Médias de produção de massa seca (MS) de espécies hibernais em sistemas de rotação de culturas em sistema orgânico no ano 2019. UTFPR, Câmpus Dois Vizinhos, 2020.

Tratamento	Massa seca Mg ha ⁻¹		
AP	7,9 a		
AP+C	6,9 ab		
AP+N+E+C	4,1 bc		
AB+TDP	2,5 c		
Média	5,3		
CV (%)	22,66**		

Médias seguidas de letras minúsculas diferentes diferem pelo teste de Tukey a p≤0,05. **significativo a p≤0,01; AP= aveia preta; AB+TDP= aveia branca+trigo duplo propósito; AP+C= aveia preta+centeio; AP+N+E+C= aveia preta+nabo forrageiro+ervilhaca+centeio. Fonte: Autoria Própria (2020).

Estes valores demonstram o potencial das culturas em adicionar MS ao sistema no período de inverno, onde na região sul brasileira é favorecida pelas condições climáticas e áreas com menos ocupação de culturas de interesse econômico no período de inverno, tornando-se oportuno a adoção de plantas de coberturas hibernais (CALEGARI; DONIZETI, 2014).

Solos de plantio direto com baixa adição de MS e solos com preparo convencional, indiferentemente da cultura utilizada, podem levar ao balanço negativo do carbono (C) ao solo (COSTA et al., 2008). Deste modo, o revolvimento do solo aliado à ausência de rotação de culturas pelo uso de plantas de cobertura, propicia baixa adição de cobertura do sistema, visto que segundo Ceretta et al. (2002), o sistema gerando aporte de MS suficientemente para manter o solo coberto o ano todo, auxilia no sucesso do SPD.

Analisando a MS total (estivais+hibernais), houve diferença significativa entre os fatores sistemas de rotação e plantas de cobertura estivais de forma isolada (Tabela 4).

As maiores produções de MS total do período avaliado foi encontrado, respectivamente, nos sistemas de rotação soja 1 e soja 2, valores de 13,1 e 11,6 Mg ha⁻¹. Sendo 40 e 39,7 % superior em média aos sistemas de rotação feijão e soja 3, respectivamente.

Possivelmente, essa diferença do sistema de rotação soja 1 e soja 2, se deve a produção de MS das espécies hibernais (Tabela 3), onde verifica-se as maiores médias para AP e AP+C, na qual a rotação soja 1 recebeu AP e a rotação com soja 2 recebeu AP+C.

Quando verificado os tratamentos com plantas de cobertura inseridas na rotação, o maior acúmulo de MS foi verificado utilizando-se milheto, sendo este superior em 59, 70 e 56% em relação à crotalária juncea, guandu anão e lab-lab, respectivamente. Possivelmente esse potencial é devido a rusticidade do milheto,

X Seminário de Extensão e Inovação XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

apresentando alta resistência a seca e boa produçao de MS, sendo uma importante cultura para a cobertura do solo (MARTINS NETTO; DURÃES, 2005).

Tabela 4- Médias da produção de MS total (Mg ha-1) de plantas de cobertura (estivais+hibernais), em diferentes sistemas de rotação na área orgânica, 2019. UTFPR, Câmpus Dois Vizinhos, 2020.

		CJ	M	GA	LL	Média	CV (%)
Soja 1	AP	^{ns} 11,9	16,5	12,3	11,7	*13,1 a	
Soja 3	AB+TDP	6,4	13,0	6,6	7,0	8,3 b	24,69
Soja 2	AP+C	10,8	16,8	8,0	11,0	11,6 a	24,03
Feijão	AP+N+E+C	8,0	13,0	8,0	8,2	9,3 b	
	Média	**9,3 b	14,8 a	8,7 b	9,5 b		12,27

Médias seguidas de mesma letra minúscula não diferem entre si, pelo teste de Skot Knot. ns: não significativo. *; ** significativo a p≤0,05 e p≤0,01 respectivamente. Onde: AP= aveia preta; AB+TDP= aveia branca+trigo duplo propósito; AP+C= aveia preta+centeio; AP+N+E+C= aveia preta+nabo forrageiro+ervilhaca+centeio; CJ= crotalária juncea; M= milheto; GA= guandu anão; LL= lab-lab. Fonte: Autoria Própria (2020).

Trabalhos vêm sendo debatidos em relação à quantidade ideal de palhada para a máxima eficiência do SPD (DAROLT, 1998; ALVERARENGA *et al.*, 2001), ambos autores estimam 6 Mg ha⁻¹ anual de palhada adicionada ao solo. Neste sentido, os sistemas de rotações soja 1 e soja 2, propiciaram as maiores adições de palhada no sistema como um todo, ao longo de 2019.

CONCLUSÃO

O milheto é uma alternativa no período de entressafra para acumular massa seca ao sistema orgânico.

A aveia preta solteira e a combinação de aveia preta + centeio forneceram maiores produção de massa seca no inverno.

O sistema de rotação soja 1 e soja 2 adicionaram maiores quantidades de massa seca ao solo.

AGRADECIMENTOS

A Fundação Araucária, Gebana Brasil e Fundação Agrisus pelo apoio financeiro ao projeto de pesquisa e a UTFPR pela oportunidade das atividades de IC.

REFERÊNCIAS

ADAMS, G. A. Influência de diferentes tipos de plantas sobre a estrutura do solo em plantio direto. UFFS. Cerro Largo, RS. 2016.

ALVARENGA, Ramon Costa *et al*. Plantas de cobertura de solo para sistema plantio direto. **Embrapa Milho e Sorgo**, 2001. Disponível em: https://www.alice.cnptia.embrapa.br/handle/doc/485005. Acesso em 03 Set. 2020.

X Seminário de Extensão e Inovação XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

ALVARES, C. A. *et al.* Koppen's climate classification map for Brazil. **Meteorologische Zeitschrift**, v.22, p.711-728, 2013. Disponível em: https://doi.org/10.1127/0941-2948/2013/0507. Acesso em: 25 Ago. 2020.

CABREIRA, M. A.F. Levantamento das classes de solos da área experimental da universidade tecnológica federal do paraná – câmpus Dois Vizinhos. Trabalho de Conclusão de Curso II em Engenharia Florestal, 50p, 2015. Disponível em: http://repositorio.roca.utfpr.edu.br/jspui/handle/1/13191. Acesso em 25 Ago. 2020.

CALEGARI, A.; DONIZETI, C. J. A. Recomendações de plantio e informações sobre o uso de espécies para adubação verde no Brasil. In: Lima Filho OF, Ambrosano EJ, Rossi F, Carlos JAD. **Adubação verde e plantas de cobertura no Brasil:** fundamentos e prática. Brasília, DF: Embrapa. 2014.

CALEGARI, A. PLANTAS DE COBERTURA: Alternativas de culturas para rotação em plantio direto. **Revista Plantio Direto**. Ano XIII. n.80. p.62-70. 2004.

CERETTA, C.A. *et al.* Manejo da adubação nitrogenada na sucessão aveia preta/milho, no sistema plantio direto. **Revista Brasileira de Ciência do Solo**, v.26, p.163-171, 2002. Disponível em: https://www.redalyc.org/pdf/1802/180217643018.pdf. Acesso em: 20 Ago. 2020.

COSTA, F. de S. *et al.* Estoque de carbono orgânico no solo e emissões de dióxido de carbono influenciadas por sistemas de manejo no Sul do Brasil. **Revista Brasileira de Ciência do Solo**, Viçosa, MG, v. 32, n. 1, p. 323-332, jan./fev. 2008. Disponível em: https://www.redalyc.org/pdf/1802/180214230029.pdf. Acesso em 20 Ago. 2020.

CRUZ, C.D. Genes Software – extended and integrated with the R, Matlab and Selegen. **Acta Scientiarum**. v.38, n.4, p.547-552, 2016.

DAROLT, M.R. Princípios para a manutenção e implantação do sistema. In: DAROLT, M.R. **Plantio direto**: pequena propriedade sustentável. IAPAR: Londrina. 1998. p.16-45. (Circular, 101).

LIMA, S. K. *et al*. **Produção e consumo de produtos orgânicos no mundo e no Brasil**. 2020. Disponível em: http://repositorio.ipea.gov.br/handle/11058/9678. Acesso em: 25 Ago. 2020.

LINK, L. *et al.* **Plantas de cobertura de verão: crescimento e acúmulo de nutrientes, épocas de dessecação e produtividade do trigo**. 2020. Dissertação de Mestrado. Universidade Tecnológica Federal do Paraná. Disponível em:

X Seminário de Extensão e Inovação XXV Seminário de Iniciação Científica e Tecnológica

23 a 27 de Novembro | Toledo - PR

http://repositorio.utfpr.edu.br:8080/jspui/handle/1/5013 Acesso em: 01 Ago. 2020.

MARTINS NETTO, D.A.; DURÃES, F.O.M. Milheto Tecnologias de Produção e Agronegócio. **EMBRAPA: Brasília**, 2005. 205p.

MUZILLI, Osmar. Manejo da matéria orgânica no sistema plantio direto: a experiência no Estado do Paraná. **Informações agronômicas**, n. 100, 2002.

TIECHER, Tales. Manejo e conservação do solo e da água em pequenas propriedades rurais no sul do Brasil: práticas alternativas de manejo visando a conservação do solo e da água. 2016. Disponível em: https://www.lume.ufrgs.br/bitstream/handle/10183/149123/001005239.pdf?sequence=1. Acesso em: 28 Ago. 2020.