

https://eventos.utfpr.edu.br//sicite/sicite2020

Determinação da temperatura de cor de lâmpadas LEDs a partir da distribuição espectral luminosa

Determination of the color temperature of LED lamps from the spectral luminous distribution

RESUMO

Luis Mateus Galant Castanha castanha@alunos.utfpr.edu.br Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brasil

Luis Carlos Mathias mathias@utfpr.edu.br Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brasil

Recebido: 04 set. 2020.

Aprovado: xx out. 2020.

Internacional.

(ii)

Direito autoral: Este trabalho está licenciado sob os termos da Licença

Creative Commons-Atribuição 4.0

A iluminação com lâmpadas LED vem cada vez mais substituindo as lâmpadas convencionais devido principalmente às características de maior durabilidade e eficiência energética. Neste cenário, a temperatura de cor continua sendo um parâmetro que caracteriza a qualidade da iluminação para cada aplicação. A determinação da temperatura de cor correlacionada (CCT - *Correlated Color Temperature*) da lâmpada LED é necessária devido não emitir uma radiância espectral de corpo negro. Assim, o presente trabalho faz uma revisão acerca dos espaços de cores e de alguns métodos de determinação da CCT. Na sequência, a partir de medições experimentais da radiância espectral de uma lâmpada fluorescente e de duas lâmpadas LED, determina as CCTs utilizando quatro métodos diferentes os quais apresentaram resultados coerentes.

PALAVRAS-CHAVE: Lâmpadas LED, Distribuição espectral luminosa, Temperatura de cor.

ABSTRACT

Lighting with LED lamps is increasingly replacing conventional lamps due mainly to the characteristics of greater durability and energy efficiency. In this scenario, the color temperature remains a parameter that notes the quality of the lighting for each application. The determination of the correlated color temperature (CCT) of the LED lamp is necessary because it does not emit a blackbody spectral radiance. Thus, the present work reviews the nucleus spaces and some methods of determining CCT. Then, from the experimental spectral radiance of a fluorescent lamp and two LED lamps, determining the CCTs using four different ones that give coherent results.

KEYWORDS: LED lamps, Luminous spectral distribution, Color temperature.

INTRODUÇÃO

As características de maior eficiência energética, de maior durabilidade, de diminuição de seu preço, etc, tem impulsionado a substituição da iluminação convencional pela de lâmpadas LEDs. Entretanto, aspectos acerca da qualidade deste tipo de iluminação artificial continuam reservando atenção. Um destes aspectos se deve a temperatura de cor (CT – *Color Temperature*), o qual é comumente utilizada para expressar a aparência de cor emitida. Ela é mensurada em kelvin (K) e quanto mais azulada é a tonalidade, maior a CT.

REVISÃO DE LITERATURA

A sensibilidade do olho humano em distinguir as cores é denominada de visão fotópica. Neste sentido, o olho humano com visão normal possui três tipos de células cônicas que detectam a luz. Entretanto a distribuição destes três cones é variável na fóvea (região central da retina do olho onde se forma a imagem e onde concentram as células sensoras), sendo dependente do campo de visão do observador. Deste modo, a Comissão Internacional de Iluminação (CIE – *International Commission on Illumination*) definiu funções de correspondência de cores (FCCs) de um observador padrão. Um destes padrões representa a resposta cromática de um ser humano dentro de um arco de 10° dentro da fóvea.

As FCCs do CIE representam a resposta cromática do observador padrão a partir de três curvas de sensibilidade espectral. Considerando a função gaussiana com média μ e desvio padrão σ (WYMAN, SLOAN, SHIRLEY, 2013):

$$g(x,\alpha,\mu,\sigma_1,\sigma_2) = \alpha \exp\left(\frac{x-\mu}{-2\sigma^2}\right), \text{ sendo } \sigma = \begin{cases} \sigma_1 & ; x < \mu \\ \sigma_2 & ; x \ge \mu \end{cases};$$
(1)

as FCCs da CIE XYZ podem ser aproximadas por:

$$\overline{x}(\lambda) = g(\lambda; 1,056; 5998; 379; 310) + g(\lambda; 0,362; 4420; 160; 267)$$

$$+g(\lambda; -0.065; 5011; 204; 262);$$
 (2)

$$\overline{v}(\lambda) = g(\lambda; 0, 821; 5688; 469; 405) + g(\lambda; 0, 286; 5309; 163; 311);$$
(3)

$$\overline{z}(\lambda) = g(\lambda; 1, 217; 4370; 118; 360) + g(\lambda; 0, 681; 4590; 260; 138);$$
(4)

sendo o comprimento de onda λ dado em ângstrons (A°). A Figura 1 foi gerada para apresentar estas curvas considerando o comprimento de onda dado em nanômetros (nm).

Os valores triestímulos XYZ para o caso emissivo, que é o caso para a análise das luminárias LED, podem ser determinados a partir da integração do produto entre a radiância espectral $I(\lambda)$ e as FCCs (JONES, 1944):

$$X = \int_{380\,\mathrm{nm}}^{760\,\mathrm{nm}} I(\lambda)\overline{x}(\lambda)d\lambda; \tag{5}$$

$$Y = \int_{380\,\mathrm{nm}}^{780\,\mathrm{nm}} I(\lambda) \overline{y}(\lambda) d\lambda; \tag{6}$$

$$Z = \int_{380\,\mathrm{nm}}^{780\,\mathrm{nm}} I(\lambda)\overline{z}(\lambda)d\lambda; \tag{7}$$

sendo os limites de integração de λ entre 380 a 780 nm devido compreender a faixa de sensibilidade fotópica do olho humano.

Figura 1 – Funções de correspondência de cores do CIE XYZ

Fonte: Adaptado de Wyman et al. (2013).

O espaço de cores, ou diagrama de cromaticidade, CIE XYZ foi elaborado para representar a cromaticidade de uma cor em um gráfico em duas dimensões (*x-y*). A Figura 2 apresenta o espaço de cores elaborado pela CIE em 1931. Nesta abordagem, os parâmetros x, $y \in z$ são três valores normalizados (ASHDOWN, 2002):

$$x = \frac{\lambda}{X + Y + Z};\tag{8}$$

$$y = \frac{Y}{X + Y + Z};$$
(9)

$$z = \frac{Z}{X + Y + Z} = 1 - x - y.$$
(10)

Fonte: Joo et al. (2014).

A radiação do corpo negro é uma referência comumente utilizada para determinar a CT de uma fonte de luz. Nesta abordagem, a Lei de Planck representa a radiância espectral emitida por um corpo negro com uma determinada temperatura T em kelvins (ASHDOWN, 2002):

$$I(\lambda,T) = c_1 \lambda^{-5} \left(\exp\left(\frac{c_2}{\lambda T}\right) - 1 \right)^{-1};$$
(11)

com c_1 = 3,74183.10⁻¹⁶ W m² e c_2 = 1,4388.10⁻² m K.

Entretanto, a radiância espectral emitida por lâmpadas fluorescentes ou LED não são iguais ao de um corpo negro devido aos seus processos diferentes de geração de luz (ASHDOWN, 2002). Porém, a temperatura de cor destas fontes pode ser avaliada em termos de uma Temperatura de Cor Correlacionada (CCT – *Correlated Color Temperature*). Deste modo, a CCT representa a CT de um corpo negro que mais se assemelha com a radiância espectral destas lâmpadas.

Neste paradigma, Judd (1935) determinou um espaço de cromaticidade uniforme (UCS – *Uniform Chromaticity Space*) no qual a distância cromática é proporcional à diferença perceptual do olho humano. A Figura 3 apresenta este espaço de cores. Para converter os valores triestímulos XYZ em coordenadas RGB utiliza-se a transformação:

$$\begin{bmatrix} R\\G\\B \end{bmatrix} = \begin{bmatrix} 3,1956 & 2,4478 & -0,1434\\-2,5455 & 7,0492 & 0,9963\\0,0000 & 0,0000 & 1,0000 \end{bmatrix} \begin{bmatrix} X\\Y\\Z \end{bmatrix}.$$
(12)

Fonte: Adaptado de Adoniscik (2020a, 2020b).

A partir da Equações (8), (9), (10) e (12) é possível determinar as coordenadas do diagrama de cromaticidade de Judd da a direita da Figura 3 (JONES, 1944):

$$u_{\rm J} = \frac{0,4661x + 0,1593y}{y - 0,15735x + 0,2424};\tag{13}$$

$$v_{\rm J} = \frac{0,6581y}{y - 0,15735x + 0,2424}.$$
 (14)

Em 1937, a partir de considerações geométricas simplificadoras, MacAdam (1937) sugere um diagrama UCS modificado, o qual se tornou o espaço de cores padrão CIE 1960 UCS. Este espaço está apresentado na Figura 6. Neste caso, a posição neste espaço pode ser dada por:

$u = \frac{4x + 6y}{-2x + 12y + 3};$		(15)
$v = \frac{6y}{-2x + 12y + 3}.$		(16)

Para encontrar a CCT no diagrama UCS, basta determinar o ponto dado pela Eqs. (15) e (16) no lugar de Planck na Figura 3. A Figura 1 também apresenta dentro do espaço de cores uma curva do local de Planck que vai de $T_c = \infty$ até alguns milhares de kelvins. Em ambos os gráficos, as retas que cruzam a curva representam a radiância de Planck nas determinadas CTs.

Considerando temperaturas de cor próximas da luz do dia, MacAdam (1992, apud HERNANDEZ-ANDRES, LEE, ROMERO, 1999) propôs a seguinte aproximação para determinar a CCT:

$$CCT_{al}(x, y) = -449n^3 + 3525n^2 - 6823, 3n + 5520, 33;$$
(17)

sendo:

$$n = \frac{x - x_e}{y - y_e};\tag{18}$$

com os denominados ponto de epicentro $x_e = 0,3320 e y_e = 0,1858$.

Hernandez *et al.* (1999) propõe uma aproximação mais recente ao considerar o epicentro x_e = 0,3366 e y_e = 0,1735 e a expressão:

$$\operatorname{CCT}_{a_2}(x, y) = A_0 + A_1 \exp\left(\frac{-n}{t_1}\right) + A_2 \exp\left(\frac{-n}{t_2}\right) + A_3 \exp\left(\frac{-n}{t_3}\right);$$
(19)

sendo que para fins de iluminação (faixa de interesse de CT entre 3000 K e 50000 K), seus parâmetros estão registrados na Tabela 1.

	1	2	
Parâmetro	Valor	Parâmetro	Valor
A_0	-949,86315		-
A_1	6253,80338	t_1	0,92159
A_2	28,70599	t_2	0,20039
A_3	0,00004	t_3	0,07125

Tabela 1 – Parâmetros para a determinação da CCT_{a2} da Eq. (17)

Fonte: Hernandez et al. (1999).

MATERIAIS E MÉTODOS

Com um espectrofotômetro, foram capturadas as radiâncias espectrais de uma lâmpada fluorescente (LF) tubular de 36W do fabricante 1 e de duas lâmpadas LED também de formato tubular do fabricante 2. Não há a informação da CCT nominal da LF pois não apresentava inscrito em seu corpo. Já uma das lâmpadas LED apresentava uma CCT quente nominal de 4000 K enquanto a outra apresentava uma CCT fria nominal de 6500 K. A Figura 4 apresenta as medições da radiância espectral normalizado pela área destas lâmpadas.

Pela Figura 4 é possível perceber as raias de emissão do gás da lâmpada fluorescente e o espalhamento destas raias devido à camada de fósforo que está presente internamente ao vidro destas lâmpadas. Quanto às lâmpadas LED, é perceptível o pico de emissão do LED azul próximo aos 450 nm e o espalhamento

deste devido à camada de fósforo. Também é notável o maior espalhamento e o deslocamento para o vermelho da radiância da lâmpada LED de cor quente.

Figura 4 – Radiância espectral medida das lâmpadas tubulares.

RESULTADOS E DISCUSSÃO

Inicialmente, para cada uma das lâmpadas, os triestímulos XYZ foram determinados pelas Eqs. (5), (6) e (7) considerando as radiâncias medidas. Depois os parâmetros x, $y \in z$ foram determinados pelas Eqs. (8), (9) e (10). A partir disto foram determinados os CCTs utilizando quatro abordagens: pelo espaço de cores CIE 1931 (Figura 5), pelo espaço de cores do CIE 1960 UCS (Figura 6), pelas equações de aproximação Eq. (17) e Eq. (19). A Tabela 2 apresenta os valores dos parâmetros triestímulos, das coordenadas no CIE 1931 e no CIE 1960 UCS.

Tabela 2 – Parâmetros triestímulos e das coordenadas dos espaços de cores

	Triestímulos		CIE 1931		CIE 1960 UCS		
Lâmpada	X	Y	Z	x	у	и	v
LF	2,299	2,578	1,193	0,3787	0,4247	0,2064	0,3472
LED 4000 K	2,235	2,420	1,031	0,3930	0,4256	0,2147	0,3488
LED 6500 K	2,052	2,387	1,396	0,3516	0,4091	0,1952	0,3406

Fonte: Próprio autor (2020).

Figura 6 – CCTs no local de Planck no espaço de cores CIE 1960 UCS

Fonte: Adaptado de Adoniscik (2020c).

Por fim, a Tabela 3 apresenta as CCTs resultantes em que, no geral, houve coerência entre os quatro métodos de estimativa. Os valores CCT_{a2} estimados pela Eq. (19) se apresentaram um pouco menores. Isto pode ser atribuído ao fato desta aproximação considerar uma faixa muito ampla de CCTs.

	CCT [K]			
Lâmpada	CIE 1931	CIE 1960 UCS	$\mathbf{CCT}a_1$	
LF	~ 4200	~ 4200	4317	4119
LED 4000 K	~ 4000	~ 4000	4006	3804
LED 6500 K	~ 5000	~ 4800	4947	4753

Tabela	3 –	CCTs	resultantes	dos 4	métodos
rubciu	9	0015	resultances	405 -	metodos

Fonte: Próprio autor (2020).

CONCLUSÃO

Por conseguinte, mediante uma breve revisão de literatura dos espaços de cores, foi possível determinar a CCT das três fontes analisadas utilizando as quatro metodologias apresentadas. Para a lâmpada LED 4000 K, as CCTs medidas foram coerentes com o valor nominal. Entretanto para a LED 6500 K, o valor da CCT medida ficou em torno de 5000 K refutando a especificação nominal.

AGRADECIMENTOS

Agradecemos ao Laboratório de Optoeletrônica do Departamento de Física da Universidade Estadual de Londrina (UEL) pelas medições ópticas. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Universidade Tecnológica Federal do Paraná (UTFPR).

REFERÊNCIAS

WYMAN, Chris; SLOAN, Peter-Pike; SHIRLEY, Peter. Simple analytic approximations to the CIE XYZ color matching functions. Journal of Computer Graphics Techniques, v. 2, n. 2, p. 1-11, 2013.

JONES, L. A. Quantitative data and methods for colorimetry. **Journal of Optical Society of America**, v. 34, p. 633-688, 1944.

ASHDOWN, Ian E. Chromaticity and color temperature for achitectural lighting. In: Solid State Lighting II. **International Society for Optics and Photonics**, 2002. p. 51-60.

JOO, Chul Woong *et al*. Color temperature tunable white organic light-emitting diodes. **Organic Electronics**, v. 15, n. 1, p. 189-195, 2014.

ADONISCIK. Judd's Maxwell triangle. In: WIKIMEDIA COMMONS, a midiateca livre. Flórida: Wikimedia Foundation, 2020a. Disponível em: <u>https://commons.wikimedia.org/wiki/File:Judd%27s_Maxwell_triangle.svg</u> sob CC BY-SA. Acesso em: 06 out. 2020.

ADONISCIK. Judd's UCS using the 1931 standard observer and second radiation constant c2=1.4388. In: WIKIMEDIA COMMONS, a midiateca livre. Flórida: Wikimedia Foundation, 2020b. Disponível em: <u>https://commons.wikimedia.org/wiki/File:Judd%27s-UCS.png</u> sob CC BY 3.0. Acesso em: 06 out. 2020

ADONISCIK. Planckian locus in the CIE 1960 UCS using the Judd-Vos 2° CMF. In: WIKIMEDIA COMMONS, a midiateca livre. Flórida: Wikimedia Foundation, 2020c. Disponível em: <u>https://commons.wikimedia.org/wiki/File:Planckian-locus.png</u> sob CC0. Acesso em: 06 out. 2020.

JUDD, Deane B. A Maxwell triangle yielding uniform chromaticity scales. Journal of Optical Society of America, v. 25, n. 1, p. 24-35, 1935.

MACADAM, David L. Projective transformations of ICI color specifications. **Journal** of Optical Society of America, v. 27, n. 8, p. 294-299, 1937.

HERNANDEZ-ANDRES, Javier; LEE, Raymond L.; ROMERO, Javier. Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. **Applied Optics**, v. 38, n. 27, p. 5703-5709, 1999.