Última alteração: 2020-10-28
Resumo
O uso de análise multivariada tem grande aplicação nas análises de dados mais complexas encontrada recentemente na literatura. Um dos fatores pode ser atribuído ao uso da análise Bayesiana que dá flexibilidade à construção de novos modelos. Muitos problemas em que tratava duas variáveis possivelmente correlacionadas como independentes, hoje podem ser resolvidos sem grandes custos computacionais utilizando-se uma distribuição bivariada quando os pressupostos desta distribuição são garantidos. O objetivo deste trabalho é apresentar quatro modelos bivariados distintos para regressão linear múltipla, baseados na distribuição normal, sob o enfoque Bayesiano, e aplicá-los em um conjunto de dados reais. Como resultado, os modelos bivariados propostos se ajustaram melhor aos dados analisados quando comparados ao modelo que pressupõe independência das variáveis respostas.